Logo Search packages:      
Sourcecode: dahdi-linux version File versions  Download package

wctdm.c

/*
 * Wildcard TDM400P TDM FXS/FXO Interface Driver for DAHDI Telephony interface
 *
 * Written by Mark Spencer <markster@digium.com>
 *            Matthew Fredrickson <creslin@digium.com>
 *
 * Copyright (C) 2001-2008, Digium, Inc.
 *
 * All rights reserved.
 *
 */

/*
 * See http://www.asterisk.org for more information about
 * the Asterisk project. Please do not directly contact
 * any of the maintainers of this project for assistance;
 * the project provides a web site, mailing lists and IRC
 * channels for your use.
 *
 * This program is free software, distributed under the terms of
 * the GNU General Public License Version 2 as published by the
 * Free Software Foundation. See the LICENSE file included with
 * this program for more details.
 */

#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/moduleparam.h>
#include <linux/sched.h>
#include <asm/io.h>
#include "proslic.h"

/*
 *  Define for audio vs. register based ring detection
 *  
 */
/* #define AUDIO_RINGCHECK  */

/*
  Experimental max loop current limit for the proslic
  Loop current limit is from 20 mA to 41 mA in steps of 3
  (according to datasheet)
  So set the value below to:
  0x00 : 20mA (default)
  0x01 : 23mA
  0x02 : 26mA
  0x03 : 29mA
  0x04 : 32mA
  0x05 : 35mA
  0x06 : 37mA
  0x07 : 41mA
*/
static int loopcurrent = 20;
#define POLARITY_XOR(card) ((reversepolarity!=0) ^ (wc->mod[(card)].fxs.reversepolarity!=0) ^ (wc->mod[(card)].fxs.vmwi_lrev!=0))

static int reversepolarity = 0;

static alpha  indirect_regs[] =
{
{0,255,"DTMF_ROW_0_PEAK",0x55C2},
{1,255,"DTMF_ROW_1_PEAK",0x51E6},
{2,255,"DTMF_ROW2_PEAK",0x4B85},
{3,255,"DTMF_ROW3_PEAK",0x4937},
{4,255,"DTMF_COL1_PEAK",0x3333},
{5,255,"DTMF_FWD_TWIST",0x0202},
{6,255,"DTMF_RVS_TWIST",0x0202},
{7,255,"DTMF_ROW_RATIO_TRES",0x0198},
{8,255,"DTMF_COL_RATIO_TRES",0x0198},
{9,255,"DTMF_ROW_2ND_ARM",0x0611},
{10,255,"DTMF_COL_2ND_ARM",0x0202},
{11,255,"DTMF_PWR_MIN_TRES",0x00E5},
{12,255,"DTMF_OT_LIM_TRES",0x0A1C},
{13,0,"OSC1_COEF",0x7B30},
{14,1,"OSC1X",0x0063},
{15,2,"OSC1Y",0x0000},
{16,3,"OSC2_COEF",0x7870},
{17,4,"OSC2X",0x007D},
{18,5,"OSC2Y",0x0000},
{19,6,"RING_V_OFF",0x0000},
{20,7,"RING_OSC",0x7EF0},
{21,8,"RING_X",0x0160},
{22,9,"RING_Y",0x0000},
{23,255,"PULSE_ENVEL",0x2000},
{24,255,"PULSE_X",0x2000},
{25,255,"PULSE_Y",0x0000},
//{26,13,"RECV_DIGITAL_GAIN",0x4000},     // playback volume set lower
{26,13,"RECV_DIGITAL_GAIN",0x2000}, // playback volume set lower
{27,14,"XMIT_DIGITAL_GAIN",0x4000},
//{27,14,"XMIT_DIGITAL_GAIN",0x2000},
{28,15,"LOOP_CLOSE_TRES",0x1000},
{29,16,"RING_TRIP_TRES",0x3600},
{30,17,"COMMON_MIN_TRES",0x1000},
{31,18,"COMMON_MAX_TRES",0x0200},
{32,19,"PWR_ALARM_Q1Q2",0x07C0},
{33,20,"PWR_ALARM_Q3Q4",0x2600},
{34,21,"PWR_ALARM_Q5Q6",0x1B80},
{35,22,"LOOP_CLOSURE_FILTER",0x8000},
{36,23,"RING_TRIP_FILTER",0x0320},
{37,24,"TERM_LP_POLE_Q1Q2",0x008C},
{38,25,"TERM_LP_POLE_Q3Q4",0x0100},
{39,26,"TERM_LP_POLE_Q5Q6",0x0010},
{40,27,"CM_BIAS_RINGING",0x0C00},
{41,64,"DCDC_MIN_V",0x0C00},
{42,255,"DCDC_XTRA",0x1000},
{43,66,"LOOP_CLOSE_TRES_LOW",0x1000},
};

#include <dahdi/kernel.h>
#include <dahdi/wctdm_user.h>

#include "fxo_modes.h"

#define NUM_FXO_REGS 60

#define WC_MAX_IFACES 128

#define WC_CNTL         0x00
#define WC_OPER         0x01
#define WC_AUXC         0x02
#define WC_AUXD         0x03
#define WC_MASK0        0x04
#define WC_MASK1        0x05
#define WC_INTSTAT      0x06
#define WC_AUXR         0x07

#define WC_DMAWS  0x08
#define WC_DMAWI  0x0c
#define WC_DMAWE  0x10
#define WC_DMARS  0x18
#define WC_DMARI  0x1c
#define WC_DMARE  0x20

#define WC_AUXFUNC      0x2b
#define WC_SERCTL 0x2d
#define WC_FSCDELAY     0x2f

#define WC_REGBASE      0xc0

#define WC_SYNC         0x0
#define WC_TEST         0x1
#define WC_CS           0x2
#define WC_VER          0x3

#define BIT_CS          (1 << 2)
#define BIT_SCLK  (1 << 3)
#define BIT_SDI         (1 << 4)
#define BIT_SDO         (1 << 5)

#define FLAG_EMPTY      0
#define FLAG_WRITE      1
#define FLAG_READ 2

#define DEFAULT_RING_DEBOUNCE 64          /* Ringer Debounce (64 ms) */

#define POLARITY_DEBOUNCE     64          /* Polarity debounce (64 ms) */

#define OHT_TIMER       6000  /* How long after RING to retain OHT */

#define FLAG_3215 (1 << 0)

#define NUM_CARDS 4

#define MAX_ALARMS 10

#define MOD_TYPE_FXS    0
#define MOD_TYPE_FXO    1

#define MINPEGTIME      10 * 8            /* 30 ms peak to peak gets us no more than 100 Hz */
#define PEGTIME         50 * 8            /* 50ms peak to peak gets us rings of 10 Hz or more */
#define PEGCOUNT  5           /* 5 cycles of pegging means RING */

#define NUM_CAL_REGS 12

struct calregs {
      unsigned char vals[NUM_CAL_REGS];
};

enum proslic_power_warn {
      PROSLIC_POWER_UNKNOWN = 0,
      PROSLIC_POWER_ON,
      PROSLIC_POWER_WARNED,
};

enum battery_state {
      BATTERY_UNKNOWN = 0,
      BATTERY_PRESENT,
      BATTERY_LOST,
};

struct wctdm {
      struct pci_dev *dev;
      char *variety;
      struct dahdi_span span;
      unsigned char ios;
      int usecount;
      unsigned int intcount;
      int dead;
      int pos;
      int flags[NUM_CARDS];
      int freeregion;
      int alt;
      int curcard;
      int cardflag;           /* Bit-map of present cards */
      enum proslic_power_warn proslic_power;
      spinlock_t lock;

      union {
            struct fxo {
#ifdef AUDIO_RINGCHECK
                  unsigned int pegtimer;
                  int pegcount;
                  int peg;
                  int ring;
#else             
                  int wasringing;
                  int lastrdtx;
#endif                  
                  int ringdebounce;
                  int offhook;
                  unsigned int battdebounce;
                  unsigned int battalarm;
                  enum battery_state battery;
                    int lastpol;
                    int polarity;
                    int polaritydebounce;
            } fxo;
            struct fxs {
                  int oldrxhook;
                  int debouncehook;
                  int lastrxhook;
                  int debounce;
                  int ohttimer;
                  int idletxhookstate;          /* IDLE changing hook state */
                  int lasttxhook;
                  int palarms;
                  int reversepolarity;          /* Reverse Line */
                  int mwisendtype;
                  struct dahdi_vmwi_info vmwisetting;
                  int vmwi_active_messages;
                  int vmwi_lrev:1;        /* MWI Line Reversal*/
                  int vmwi_hvdc:1;        /* MWI High Voltage DC Idle line */
                  int vmwi_hvac:1;        /* MWI Neon High Voltage AC Idle line */
                  struct calregs calregs;
            } fxs;
      } mod[NUM_CARDS];

      /* Receive hook state and debouncing */
      int modtype[NUM_CARDS];
      unsigned char reg0shadow[NUM_CARDS];
      unsigned char reg1shadow[NUM_CARDS];

      unsigned long ioaddr;
      dma_addr_t  readdma;
      dma_addr_t  writedma;
      volatile unsigned int *writechunk;                    /* Double-word aligned write memory */
      volatile unsigned int *readchunk;                     /* Double-word aligned read memory */
      struct dahdi_chan _chans[NUM_CARDS];
      struct dahdi_chan *chans[NUM_CARDS];
};


struct wctdm_desc {
      char *name;
      int flags;
};

static struct wctdm_desc wctdm = { "Wildcard S400P Prototype", 0 };
static struct wctdm_desc wctdme = { "Wildcard TDM400P REV E/F", 0 };
static struct wctdm_desc wctdmh = { "Wildcard TDM400P REV H", 0 };
static struct wctdm_desc wctdmi = { "Wildcard TDM400P REV I", 0 };
static int acim2tiss[16] = { 0x0, 0x1, 0x4, 0x5, 0x7, 0x0, 0x0, 0x6, 0x0, 0x0, 0x0, 0x2, 0x0, 0x3 };

static struct wctdm *ifaces[WC_MAX_IFACES];

static void wctdm_release(struct wctdm *wc);

static unsigned int fxovoltage;
static unsigned int battdebounce;
static unsigned int battalarm;
static unsigned int battthresh;
static int ringdebounce = DEFAULT_RING_DEBOUNCE;
static int fwringdetect = 0;
static int debug = 0;
static int robust = 0;
static int timingonly = 0;
static int lowpower = 0;
static int boostringer = 0;
static int fastringer = 0;
static int _opermode = 0;
static char *opermode = "FCC";
static int fxshonormode = 0;
static int alawoverride = 0;
static int fastpickup = 0;
static int fxotxgain = 0;
static int fxorxgain = 0;
static int fxstxgain = 0;
static int fxsrxgain = 0;

static int wctdm_init_proslic(struct wctdm *wc, int card, int fast , int manual, int sane);

static inline void wctdm_transmitprep(struct wctdm *wc, unsigned char ints)
{
      volatile unsigned int *writechunk;
      int x;
      if (ints & 0x01) 
            /* Write is at interrupt address.  Start writing from normal offset */
            writechunk = wc->writechunk;
      else 
            writechunk = wc->writechunk + DAHDI_CHUNKSIZE;
      /* Calculate Transmission */
      dahdi_transmit(&wc->span);

      for (x=0;x<DAHDI_CHUNKSIZE;x++) {
            /* Send a sample, as a 32-bit word */
            writechunk[x] = 0;
#ifdef __BIG_ENDIAN
            if (wc->cardflag & (1 << 3))
                  writechunk[x] |= (wc->chans[3]->writechunk[x]);
            if (wc->cardflag & (1 << 2))
                  writechunk[x] |= (wc->chans[2]->writechunk[x] << 8);
            if (wc->cardflag & (1 << 1))
                  writechunk[x] |= (wc->chans[1]->writechunk[x] << 16);
            if (wc->cardflag & (1 << 0))
                  writechunk[x] |= (wc->chans[0]->writechunk[x] << 24);
#else
            if (wc->cardflag & (1 << 3))
                  writechunk[x] |= (wc->chans[3]->writechunk[x] << 24);
            if (wc->cardflag & (1 << 2))
                  writechunk[x] |= (wc->chans[2]->writechunk[x] << 16);
            if (wc->cardflag & (1 << 1))
                  writechunk[x] |= (wc->chans[1]->writechunk[x] << 8);
            if (wc->cardflag & (1 << 0))
                  writechunk[x] |= (wc->chans[0]->writechunk[x]);
#endif            
      }

}

#ifdef AUDIO_RINGCHECK
static inline void ring_check(struct wctdm *wc, int card)
{
      int x;
      short sample;
      if (wc->modtype[card] != MOD_TYPE_FXO)
            return;
      wc->mod[card].fxo.pegtimer += DAHDI_CHUNKSIZE;
      for (x=0;x<DAHDI_CHUNKSIZE;x++) {
            /* Look for pegging to indicate ringing */
            sample = DAHDI_XLAW(wc->chans[card].readchunk[x], (&(wc->chans[card])));
            if ((sample > 10000) && (wc->mod[card].fxo.peg != 1)) {
                  if (debug > 1) printk(KERN_DEBUG "High peg!\n");
                  if ((wc->mod[card].fxo.pegtimer < PEGTIME) && (wc->mod[card].fxo.pegtimer > MINPEGTIME))
                        wc->mod[card].fxo.pegcount++;
                  wc->mod[card].fxo.pegtimer = 0;
                  wc->mod[card].fxo.peg = 1;
            } else if ((sample < -10000) && (wc->mod[card].fxo.peg != -1)) {
                  if (debug > 1) printk(KERN_DEBUG "Low peg!\n");
                  if ((wc->mod[card].fxo.pegtimer < (PEGTIME >> 2)) && (wc->mod[card].fxo.pegtimer > (MINPEGTIME >> 2)))
                        wc->mod[card].fxo.pegcount++;
                  wc->mod[card].fxo.pegtimer = 0;
                  wc->mod[card].fxo.peg = -1;
            }
      }
      if (wc->mod[card].fxo.pegtimer > PEGTIME) {
            /* Reset pegcount if our timer expires */
            wc->mod[card].fxo.pegcount = 0;
      }
      /* Decrement debouncer if appropriate */
      if (wc->mod[card].fxo.ringdebounce)
            wc->mod[card].fxo.ringdebounce--;
      if (!wc->mod[card].fxo.offhook && !wc->mod[card].fxo.ringdebounce) {
            if (!wc->mod[card].fxo.ring && (wc->mod[card].fxo.pegcount > PEGCOUNT)) {
                  /* It's ringing */
                  if (debug)
                        printk(KERN_DEBUG "RING on %d/%d!\n", wc->span.spanno, card + 1);
                  if (!wc->mod[card].fxo.offhook)
                        dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_RING);
                  wc->mod[card].fxo.ring = 1;
            }
            if (wc->mod[card].fxo.ring && !wc->mod[card].fxo.pegcount) {
                  /* No more ring */
                  if (debug)
                        printk(KERN_DEBUG "NO RING on %d/%d!\n", wc->span.spanno, card + 1);
                  dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_OFFHOOK);
                  wc->mod[card].fxo.ring = 0;
            }
      }
}
#endif
static inline void wctdm_receiveprep(struct wctdm *wc, unsigned char ints)
{
      volatile unsigned int *readchunk;
      int x;

      if (ints & 0x08)
            readchunk = wc->readchunk + DAHDI_CHUNKSIZE;
      else
            /* Read is at interrupt address.  Valid data is available at normal offset */
            readchunk = wc->readchunk;
      for (x=0;x<DAHDI_CHUNKSIZE;x++) {
#ifdef __BIG_ENDIAN
            if (wc->cardflag & (1 << 3))
                  wc->chans[3]->readchunk[x] = (readchunk[x]) & 0xff;
            if (wc->cardflag & (1 << 2))
                  wc->chans[2]->readchunk[x] = (readchunk[x] >> 8) & 0xff;
            if (wc->cardflag & (1 << 1))
                  wc->chans[1]->readchunk[x] = (readchunk[x] >> 16) & 0xff;
            if (wc->cardflag & (1 << 0))
                  wc->chans[0]->readchunk[x] = (readchunk[x] >> 24) & 0xff;
#else
            if (wc->cardflag & (1 << 3))
                  wc->chans[3]->readchunk[x] = (readchunk[x] >> 24) & 0xff;
            if (wc->cardflag & (1 << 2))
                  wc->chans[2]->readchunk[x] = (readchunk[x] >> 16) & 0xff;
            if (wc->cardflag & (1 << 1))
                  wc->chans[1]->readchunk[x] = (readchunk[x] >> 8) & 0xff;
            if (wc->cardflag & (1 << 0))
                  wc->chans[0]->readchunk[x] = (readchunk[x]) & 0xff;
#endif
      }
#ifdef AUDIO_RINGCHECK
      for (x=0;x<wc->cards;x++)
            ring_check(wc, x);
#endif            
      /* XXX We're wasting 8 taps.  We should get closer :( */
      for (x = 0; x < NUM_CARDS; x++) {
            if (wc->cardflag & (1 << x))
                  dahdi_ec_chunk(wc->chans[x], wc->chans[x]->readchunk, wc->chans[x]->writechunk);
      }
      dahdi_receive(&wc->span);
}

static void wctdm_stop_dma(struct wctdm *wc);
static void wctdm_reset_tdm(struct wctdm *wc);
static void wctdm_restart_dma(struct wctdm *wc);

static inline void __write_8bits(struct wctdm *wc, unsigned char bits)
{
/*    Out BIT_CS    --\________________________________/----            */
/*    Out BIT_SCLK  ---\_/-\_/-\_/-\_/-\_/-\_/-\_/-\_/------            */
/*    Out BIT_SDI   ---\___/---\___/---\___/---\___/--------            */
/*    Data Bit            7   6   5   4   3   2   1   0           */
/*    Data written        0   1   0   1   0   1   0   1           */

      int x;
      /* Drop chip select */
      wc->ios &= ~BIT_CS;
      outb(wc->ios, wc->ioaddr + WC_AUXD);
      for (x=0;x<8;x++) {
            /* Send out each bit, MSB first, drop SCLK as we do so */
            if (bits & 0x80)
                  wc->ios |= BIT_SDI;
            else
                  wc->ios &= ~BIT_SDI;
            wc->ios &= ~BIT_SCLK;
            outb(wc->ios, wc->ioaddr + WC_AUXD);

            /* Now raise SCLK high again and repeat */
            wc->ios |= BIT_SCLK;
            outb(wc->ios, wc->ioaddr + WC_AUXD);
            bits <<= 1;
      }
      /* Finally raise CS back high again */
      wc->ios |= BIT_CS;
      outb(wc->ios, wc->ioaddr + WC_AUXD);
}

static inline void __reset_spi(struct wctdm *wc)
{
      /* Drop chip select and clock once and raise and clock once */
      wc->ios |= BIT_SCLK;
      outb(wc->ios, wc->ioaddr + WC_AUXD);
      wc->ios &= ~BIT_CS;
      outb(wc->ios, wc->ioaddr + WC_AUXD);
      wc->ios |= BIT_SDI;
      wc->ios &= ~BIT_SCLK;
      outb(wc->ios, wc->ioaddr + WC_AUXD);
      /* Now raise SCLK high again and repeat */
      wc->ios |= BIT_SCLK;
      outb(wc->ios, wc->ioaddr + WC_AUXD);
      /* Finally raise CS back high again */
      wc->ios |= BIT_CS;
      outb(wc->ios, wc->ioaddr + WC_AUXD);
      /* Clock again */
      wc->ios &= ~BIT_SCLK;
      outb(wc->ios, wc->ioaddr + WC_AUXD);
      /* Now raise SCLK high again and repeat */
      wc->ios |= BIT_SCLK;
      outb(wc->ios, wc->ioaddr + WC_AUXD);
      
}

static inline unsigned char __read_8bits(struct wctdm *wc)
{
/*    Out BIT_CS  --\________________________________________/----*/
/*    Out BIT_SCLK      ---\_/--\_/--\_/--\_/--\_/--\_/--\_/--\_/-------*/
/*    In  BIT_SDO ????/1111\0000/1111\0000/1111\0000/1111\0000/???*/
/*    Data bit           7    6    5    4    3    2    1    0     */
/*    Data Read          1    0    1    0    1    0    1    0     */

/*    Note: Clock High time is 2x Low time, due to input read           */

      unsigned char res=0, c;
      int x;
      /* Drop chip select */
      wc->ios &= ~BIT_CS;
      outb(wc->ios, wc->ioaddr + WC_AUXD);
      for (x=0;x<8;x++) {
            res <<= 1;
            /* Drop SCLK */
            wc->ios &= ~BIT_SCLK;
            outb(wc->ios, wc->ioaddr + WC_AUXD);
            /* Now raise SCLK high again */
            wc->ios |= BIT_SCLK;
            outb(wc->ios, wc->ioaddr + WC_AUXD);

            /* Read back the value */
            c = inb(wc->ioaddr + WC_AUXR);
            if (c & BIT_SDO)
                  res |= 1;
      }
      /* Finally raise CS back high again */
      wc->ios |= BIT_CS;
      outb(wc->ios, wc->ioaddr + WC_AUXD);

      /* And return our result */
      return res;
}

static void __wctdm_setcreg(struct wctdm *wc, unsigned char reg, unsigned char val)
{
      outb(val, wc->ioaddr + WC_REGBASE + ((reg & 0xf) << 2));
}

static unsigned char __wctdm_getcreg(struct wctdm *wc, unsigned char reg)
{
      return inb(wc->ioaddr + WC_REGBASE + ((reg & 0xf) << 2));
}

static inline void __wctdm_setcard(struct wctdm *wc, int card)
{
      if (wc->curcard != card) {
            __wctdm_setcreg(wc, WC_CS, (1 << card));
            wc->curcard = card;
      }
}

static void __wctdm_setreg(struct wctdm *wc, int card, unsigned char reg, unsigned char value)
{
      __wctdm_setcard(wc, card);
      if (wc->modtype[card] == MOD_TYPE_FXO) {
            __write_8bits(wc, 0x20);
            __write_8bits(wc, reg & 0x7f);
      } else {
            __write_8bits(wc, reg & 0x7f);
      }
      __write_8bits(wc, value);
}

static void wctdm_setreg(struct wctdm *wc, int card, unsigned char reg, unsigned char value)
{
      unsigned long flags;
      spin_lock_irqsave(&wc->lock, flags);
      __wctdm_setreg(wc, card, reg, value);
      spin_unlock_irqrestore(&wc->lock, flags);
}

static unsigned char __wctdm_getreg(struct wctdm *wc, int card, unsigned char reg)
{
      __wctdm_setcard(wc, card);
      if (wc->modtype[card] == MOD_TYPE_FXO) {
            __write_8bits(wc, 0x60);
            __write_8bits(wc, reg & 0x7f);
      } else {
            __write_8bits(wc, reg | 0x80);
      }
      return __read_8bits(wc);
}

static inline void reset_spi(struct wctdm *wc, int card)
{
      unsigned long flags;
      spin_lock_irqsave(&wc->lock, flags);
      __wctdm_setcard(wc, card);
      __reset_spi(wc);
      __reset_spi(wc);
      spin_unlock_irqrestore(&wc->lock, flags);
}

static unsigned char wctdm_getreg(struct wctdm *wc, int card, unsigned char reg)
{
      unsigned long flags;
      unsigned char res;
      spin_lock_irqsave(&wc->lock, flags);
      res = __wctdm_getreg(wc, card, reg);
      spin_unlock_irqrestore(&wc->lock, flags);
      return res;
}

static int __wait_access(struct wctdm *wc, int card)
{
    unsigned char data = 0;
    long origjiffies;
    int count = 0;

    #define MAX 6000 /* attempts */


    origjiffies = jiffies;
    /* Wait for indirect access */
    while (count++ < MAX)
       {
            data = __wctdm_getreg(wc, card, I_STATUS);

            if (!data)
                  return 0;

       }

    if(count > (MAX-1)) printk(KERN_NOTICE " ##### Loop error (%02x) #####\n", data);

      return 0;
}

static unsigned char translate_3215(unsigned char address)
{
      int x;
      for (x=0;x<sizeof(indirect_regs)/sizeof(indirect_regs[0]);x++) {
            if (indirect_regs[x].address == address) {
                  address = indirect_regs[x].altaddr;
                  break;
            }
      }
      return address;
}

static int wctdm_proslic_setreg_indirect(struct wctdm *wc, int card, unsigned char address, unsigned short data)
{
      unsigned long flags;
      int res = -1;
      /* Translate 3215 addresses */
      if (wc->flags[card] & FLAG_3215) {
            address = translate_3215(address);
            if (address == 255)
                  return 0;
      }
      spin_lock_irqsave(&wc->lock, flags);
      if(!__wait_access(wc, card)) {
            __wctdm_setreg(wc, card, IDA_LO,(unsigned char)(data & 0xFF));
            __wctdm_setreg(wc, card, IDA_HI,(unsigned char)((data & 0xFF00)>>8));
            __wctdm_setreg(wc, card, IAA,address);
            res = 0;
      };
      spin_unlock_irqrestore(&wc->lock, flags);
      return res;
}

static int wctdm_proslic_getreg_indirect(struct wctdm *wc, int card, unsigned char address)
{ 
      unsigned long flags;
      int res = -1;
      char *p=NULL;
      /* Translate 3215 addresses */
      if (wc->flags[card] & FLAG_3215) {
            address = translate_3215(address);
            if (address == 255)
                  return 0;
      }
      spin_lock_irqsave(&wc->lock, flags);
      if (!__wait_access(wc, card)) {
            __wctdm_setreg(wc, card, IAA, address);
            if (!__wait_access(wc, card)) {
                  unsigned char data1, data2;
                  data1 = __wctdm_getreg(wc, card, IDA_LO);
                  data2 = __wctdm_getreg(wc, card, IDA_HI);
                  res = data1 | (data2 << 8);
            } else
                  p = "Failed to wait inside\n";
      } else
            p = "failed to wait\n";
      spin_unlock_irqrestore(&wc->lock, flags);
      if (p)
            printk(KERN_NOTICE "%s", p);
      return res;
}

static int wctdm_proslic_init_indirect_regs(struct wctdm *wc, int card)
{
      unsigned char i;

      for (i=0; i<sizeof(indirect_regs) / sizeof(indirect_regs[0]); i++)
      {
            if(wctdm_proslic_setreg_indirect(wc, card, indirect_regs[i].address,indirect_regs[i].initial))
                  return -1;
      }

      return 0;
}

static int wctdm_proslic_verify_indirect_regs(struct wctdm *wc, int card)
{ 
      int passed = 1;
      unsigned short i, initial;
      int j;

      for (i=0; i<sizeof(indirect_regs) / sizeof(indirect_regs[0]); i++) 
      {
            if((j = wctdm_proslic_getreg_indirect(wc, card, (unsigned char) indirect_regs[i].address)) < 0) {
                  printk(KERN_NOTICE "Failed to read indirect register %d\n", i);
                  return -1;
            }
            initial= indirect_regs[i].initial;

            if ( j != initial && (!(wc->flags[card] & FLAG_3215) || (indirect_regs[i].altaddr != 255)))
            {
                   printk(KERN_NOTICE "!!!!!!! %s  iREG %X = %X  should be %X\n",
                        indirect_regs[i].name,indirect_regs[i].address,j,initial );
                   passed = 0;
            }     
      }

    if (passed) {
            if (debug)
                  printk(KERN_DEBUG "Init Indirect Registers completed successfully.\n");
    } else {
            printk(KERN_NOTICE " !!!!! Init Indirect Registers UNSUCCESSFULLY.\n");
            return -1;
    }
    return 0;
}

static inline void wctdm_proslic_recheck_sanity(struct wctdm *wc, int card)
{
      struct fxs *const fxs = &wc->mod[card].fxs;
      int res;
      /* Check loopback */
      res = wc->reg1shadow[card];
      if (!res && (res != fxs->lasttxhook)) {
            res = wctdm_getreg(wc, card, 8);
            if (res) {
                  printk(KERN_NOTICE "Ouch, part reset, quickly restoring reality (%d)\n", card);
                  wctdm_init_proslic(wc, card, 1, 0, 1);
            } else {
                  if (fxs->palarms++ < MAX_ALARMS) {
                        printk(KERN_NOTICE "Power alarm on module %d, resetting!\n", card + 1);
                        if (fxs->lasttxhook == SLIC_LF_RINGING)
                              fxs->lasttxhook = SLIC_LF_ACTIVE_FWD;
                        wctdm_setreg(wc, card, 64, fxs->lasttxhook);
                  } else {
                        if (fxs->palarms == MAX_ALARMS)
                              printk(KERN_NOTICE "Too many power alarms on card %d, NOT resetting!\n", card + 1);
                  }
            }
      }
}

static inline void wctdm_voicedaa_check_hook(struct wctdm *wc, int card)
{
#define MS_PER_CHECK_HOOK 16

#ifndef AUDIO_RINGCHECK
      unsigned char res;
#endif      
      signed char b;
      int errors = 0;
      struct fxo *fxo = &wc->mod[card].fxo;

      /* Try to track issues that plague slot one FXO's */
      b = wc->reg0shadow[card];
      if ((b & 0x2) || !(b & 0x8)) {
            /* Not good -- don't look at anything else */
            if (debug)
                  printk(KERN_DEBUG "Error (%02x) on card %d!\n", b, card + 1); 
            errors++;
      }
      b &= 0x9b;
      if (fxo->offhook) {
            if (b != 0x9)
                  wctdm_setreg(wc, card, 5, 0x9);
      } else {
            if (b != 0x8)
                  wctdm_setreg(wc, card, 5, 0x8);
      }
      if (errors)
            return;
      if (!fxo->offhook) {
            if (fwringdetect) {
                  res = wc->reg0shadow[card] & 0x60;
                  if (fxo->ringdebounce) {
                        --fxo->ringdebounce;
                        if (res && (res != fxo->lastrdtx) &&
                            (fxo->battery == BATTERY_PRESENT)) {
                              if (!fxo->wasringing) {
                                    fxo->wasringing = 1;
                                    if (debug)
                                          printk(KERN_DEBUG "RING on %d/%d!\n", wc->span.spanno, card + 1);
                                    dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_RING);
                              }
                              fxo->lastrdtx = res;
                              fxo->ringdebounce = 10;
                        } else if (!res) {
                              if ((fxo->ringdebounce == 0) && fxo->wasringing) {
                                    fxo->wasringing = 0;
                                    if (debug)
                                          printk(KERN_DEBUG "NO RING on %d/%d!\n", wc->span.spanno, card + 1);
                                    dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_OFFHOOK);
                              }
                        }
                  } else if (res && (fxo->battery == BATTERY_PRESENT)) {
                        fxo->lastrdtx = res;
                        fxo->ringdebounce = 10;
                  }
            } else {
                  res = wc->reg0shadow[card];
                  if ((res & 0x60) && (fxo->battery == BATTERY_PRESENT)) {
                        fxo->ringdebounce += (DAHDI_CHUNKSIZE * 16);
                        if (fxo->ringdebounce >= DAHDI_CHUNKSIZE * ringdebounce) {
                              if (!fxo->wasringing) {
                                    fxo->wasringing = 1;
                                    dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_RING);
                                    if (debug)
                                          printk(KERN_DEBUG "RING on %d/%d!\n", wc->span.spanno, card + 1);
                              }
                              fxo->ringdebounce = DAHDI_CHUNKSIZE * ringdebounce;
                        }
                  } else {
                        fxo->ringdebounce -= DAHDI_CHUNKSIZE * 4;
                        if (fxo->ringdebounce <= 0) {
                              if (fxo->wasringing) {
                                    fxo->wasringing = 0;
                                    dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_OFFHOOK);
                                    if (debug)
                                          printk(KERN_DEBUG "NO RING on %d/%d!\n", wc->span.spanno, card + 1);
                              }
                              fxo->ringdebounce = 0;
                        }
                  }
            }
      }

      b = wc->reg1shadow[card];

      if (fxovoltage) {
            static int count = 0;
            if (!(count++ % 100)) {
                  printk(KERN_DEBUG "Card %d: Voltage: %d Debounce %d\n", card + 1, b, fxo->battdebounce);
            }
      }

      if (unlikely(DAHDI_RXSIG_INITIAL == wc->chans[card]->rxhooksig)) {
            /*
             * dahdi-base will set DAHDI_RXSIG_INITIAL after a
             * DAHDI_STARTUP or DAHDI_CHANCONFIG ioctl so that new events
             * will be queued on the channel with the current received
             * hook state.  Channels that use robbed-bit signalling always
             * report the current received state via the dahdi_rbsbits
             * call. Since we only call dahdi_hooksig when we've detected
             * a change to report, let's forget our current state in order
             * to force us to report it again via dahdi_hooksig.
             *
             */
            fxo->battery = BATTERY_UNKNOWN;
      }

      if (abs(b) < battthresh) {
            /* possible existing states:
               battery lost, no debounce timer
               battery lost, debounce timer (going to battery present)
               battery present or unknown, no debounce timer
               battery present or unknown, debounce timer (going to battery lost)
            */

            if (fxo->battery == BATTERY_LOST) {
                  if (fxo->battdebounce) {
                        /* we were going to BATTERY_PRESENT, but battery was lost again,
                           so clear the debounce timer */
                        fxo->battdebounce = 0;
                  }
            } else {
                  if (fxo->battdebounce) {
                        /* going to BATTERY_LOST, see if we are there yet */
                        if (--fxo->battdebounce == 0) {
                              fxo->battery = BATTERY_LOST;
                              if (debug)
                                    printk(KERN_DEBUG "NO BATTERY on %d/%d!\n", wc->span.spanno, card + 1);
#ifdef      JAPAN
                              if (!wc->ohdebounce && wc->offhook) {
                                    dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_ONHOOK);
                                    if (debug)
                                          printk(KERN_DEBUG "Signalled On Hook\n");
#ifdef      ZERO_BATT_RING
                                    wc->onhook++;
#endif
                              }
#else
                              dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_ONHOOK);
                              /* set the alarm timer, taking into account that part of its time
                                 period has already passed while debouncing occurred */
                              fxo->battalarm = (battalarm - battdebounce) / MS_PER_CHECK_HOOK;
#endif
                        }
                  } else {
                        /* start the debounce timer to verify that battery has been lost */
                        fxo->battdebounce = battdebounce / MS_PER_CHECK_HOOK;
                  }
            }
      } else {
            /* possible existing states:
               battery lost or unknown, no debounce timer
               battery lost or unknown, debounce timer (going to battery present)
               battery present, no debounce timer
               battery present, debounce timer (going to battery lost)
            */

            if (fxo->battery == BATTERY_PRESENT) {
                  if (fxo->battdebounce) {
                        /* we were going to BATTERY_LOST, but battery appeared again,
                           so clear the debounce timer */
                        fxo->battdebounce = 0;
                  }
            } else {
                  if (fxo->battdebounce) {
                        /* going to BATTERY_PRESENT, see if we are there yet */
                        if (--fxo->battdebounce == 0) {
                              fxo->battery = BATTERY_PRESENT;
                              if (debug)
                                    printk(KERN_DEBUG "BATTERY on %d/%d (%s)!\n", wc->span.spanno, card + 1, 
                                           (b < 0) ? "-" : "+");                  
#ifdef      ZERO_BATT_RING
                              if (wc->onhook) {
                                    wc->onhook = 0;
                                    dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_OFFHOOK);
                                    if (debug)
                                          printk(KERN_DEBUG "Signalled Off Hook\n");
                              }
#else
                              dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_OFFHOOK);
#endif
                              /* set the alarm timer, taking into account that part of its time
                                 period has already passed while debouncing occurred */
                              fxo->battalarm = (battalarm - battdebounce) / MS_PER_CHECK_HOOK;
                        }
                  } else {
                        /* start the debounce timer to verify that battery has appeared */
                        fxo->battdebounce = battdebounce / MS_PER_CHECK_HOOK;
                  }
            }
      }

      if (fxo->lastpol >= 0) {
            if (b < 0) {
                  fxo->lastpol = -1;
                  fxo->polaritydebounce = POLARITY_DEBOUNCE / MS_PER_CHECK_HOOK;
            }
      } 
      if (fxo->lastpol <= 0) {
            if (b > 0) {
                  fxo->lastpol = 1;
                  fxo->polaritydebounce = POLARITY_DEBOUNCE / MS_PER_CHECK_HOOK;
            }
      }

      if (fxo->battalarm) {
            if (--fxo->battalarm == 0) {
                  /* the alarm timer has expired, so update the battery alarm state
                     for this channel */
                  dahdi_alarm_channel(wc->chans[card], fxo->battery == BATTERY_LOST ? DAHDI_ALARM_RED : DAHDI_ALARM_NONE);
            }
      }

      if (fxo->polaritydebounce) {
            if (--fxo->polaritydebounce == 0) {
                if (fxo->lastpol != fxo->polarity) {
                        if (debug)
                              printk(KERN_DEBUG "%lu Polarity reversed (%d -> %d)\n", jiffies, 
                               fxo->polarity, 
                               fxo->lastpol);
                        if (fxo->polarity)
                              dahdi_qevent_lock(wc->chans[card], DAHDI_EVENT_POLARITY);
                        fxo->polarity = fxo->lastpol;
                }
            }
      }
#undef MS_PER_CHECK_HOOK
}

static inline void wctdm_proslic_check_hook(struct wctdm *wc, int card)
{
      struct fxs *const fxs = &wc->mod[card].fxs;
      char res;
      int hook;

      /* For some reason we have to debounce the
         hook detector.  */

      res = wc->reg0shadow[card];
      hook = (res & 1);
      if (hook != fxs->lastrxhook) {
            /* Reset the debounce (must be multiple of 4ms) */
            fxs->debounce = 8 * (4 * 8);
#if 0
            printk(KERN_DEBUG "Resetting debounce card %d hook %d, %d\n",
                   card, hook, fxs->debounce);
#endif
      } else {
            if (fxs->debounce > 0) {
                  fxs->debounce -= 16 * DAHDI_CHUNKSIZE;
#if 0
                  printk(KERN_DEBUG "Sustaining hook %d, %d\n",
                         hook, fxs->debounce);
#endif
                  if (!fxs->debounce) {
#if 0
                        printk(KERN_DEBUG "Counted down debounce, newhook: %d...\n", hook);
#endif
                        fxs->debouncehook = hook;
                  }
                  if (!fxs->oldrxhook && fxs->debouncehook) {
                        /* Off hook */
#if 1
                        if (debug)
#endif                        
                              printk(KERN_DEBUG "wctdm: Card %d Going off hook\n", card);

                        switch (fxs->lasttxhook) {
                        case SLIC_LF_RINGING:
                        case SLIC_LF_OHTRAN_FWD:
                        case SLIC_LF_OHTRAN_REV:
                              /* just detected OffHook, during
                               * Ringing or OnHookTransfer */
                              fxs->idletxhookstate =
                                    POLARITY_XOR(card) ?
                                          SLIC_LF_ACTIVE_REV :
                                          SLIC_LF_ACTIVE_FWD;
                              break;
                        }

                        dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_OFFHOOK);
                        if (robust)
                              wctdm_init_proslic(wc, card, 1, 0, 1);
                        fxs->oldrxhook = 1;
                  
                  } else if (fxs->oldrxhook && !fxs->debouncehook) {
                        /* On hook */
#if 1
                        if (debug)
#endif                        
                              printk(KERN_DEBUG "wctdm: Card %d Going on hook\n", card);
                        dahdi_hooksig(wc->chans[card], DAHDI_RXSIG_ONHOOK);
                        fxs->oldrxhook = 0;
                  }
            }
      }
      fxs->lastrxhook = hook;
}

DAHDI_IRQ_HANDLER(wctdm_interrupt)
{
      struct wctdm *wc = dev_id;
      unsigned char ints;
      int x;
      int mode;

      ints = inb(wc->ioaddr + WC_INTSTAT);

      if (!ints)
            return IRQ_NONE;

      outb(ints, wc->ioaddr + WC_INTSTAT);

      if (ints & 0x10) {
            /* Stop DMA, wait for watchdog */
            printk(KERN_INFO "TDM PCI Master abort\n");
            wctdm_stop_dma(wc);
            return IRQ_RETVAL(1);
      }
      
      if (ints & 0x20) {
            printk(KERN_INFO "PCI Target abort\n");
            return IRQ_RETVAL(1);
      }

      for (x=0;x<4;x++) {
            if (wc->cardflag & (1 << x) &&
                (wc->modtype[x] == MOD_TYPE_FXS)) {
                  struct fxs *const fxs = &wc->mod[x].fxs;
                  if (fxs->lasttxhook == SLIC_LF_RINGING) {
                        /* RINGing, prepare for OHT */
                        fxs->ohttimer = OHT_TIMER << 3;

                        /* logical XOR 3 variables
                            module parameter 'reversepolarity', global reverse all FXS lines. 
                            ioctl channel variable fxs 'reversepolarity', Line Reversal Alert Signal if required.
                            ioctl channel variable fxs 'vmwi_lrev', VMWI pending.
                         */

                        /* OHT mode when idle */
                        fxs->idletxhookstate = POLARITY_XOR(x) ?
                                          SLIC_LF_OHTRAN_REV :
                                          SLIC_LF_OHTRAN_FWD;
                  } else if (fxs->ohttimer) {
                        fxs->ohttimer -= DAHDI_CHUNKSIZE;
                        if (fxs->ohttimer)
                              continue;

                        /* Switch to Active : Reverse Forward */
                        fxs->idletxhookstate = POLARITY_XOR(x) ?
                                          SLIC_LF_ACTIVE_REV :
                                          SLIC_LF_ACTIVE_FWD;

                        if ((fxs->lasttxhook == SLIC_LF_OHTRAN_FWD) ||
                            (fxs->lasttxhook == SLIC_LF_OHTRAN_REV)) {
                              /* Apply the change if appropriate */
                              fxs->lasttxhook = POLARITY_XOR(x) ?
                                             SLIC_LF_ACTIVE_REV :
                                             SLIC_LF_ACTIVE_FWD;

                              wctdm_setreg(wc, x, 64,
                                         fxs->lasttxhook);
                        }
                  }
            }
      }

      if (ints & 0x0f) {
            wc->intcount++;
            x = wc->intcount & 0x3;
            mode = wc->intcount & 0xc;
            if (wc->cardflag & (1 << x)) {
                  switch(mode) {
                  case 0:
                        /* Rest */
                        break;
                  case 4:
                        /* Read first shadow reg */
                        if (wc->modtype[x] == MOD_TYPE_FXS)
                              wc->reg0shadow[x] = wctdm_getreg(wc, x, 68);
                        else if (wc->modtype[x] == MOD_TYPE_FXO)
                              wc->reg0shadow[x] = wctdm_getreg(wc, x, 5);
                        break;
                  case 8:
                        /* Read second shadow reg */
                        if (wc->modtype[x] == MOD_TYPE_FXS)
                              wc->reg1shadow[x] = wctdm_getreg(wc, x, 64);
                        else if (wc->modtype[x] == MOD_TYPE_FXO)
                              wc->reg1shadow[x] = wctdm_getreg(wc, x, 29);
                        break;
                  case 12:
                        /* Perform processing */
                        if (wc->modtype[x] == MOD_TYPE_FXS) {
                              wctdm_proslic_check_hook(wc, x);
                              if (!(wc->intcount & 0xf0)) {
                                    wctdm_proslic_recheck_sanity(wc, x);
                              }
                        } else if (wc->modtype[x] == MOD_TYPE_FXO) {
                              wctdm_voicedaa_check_hook(wc, x);
                        }
                        break;
                  }
            }
            if (!(wc->intcount % 10000)) {
                  /* Accept an alarm once per 10 seconds */
                  for (x=0;x<4;x++) 
                        if (wc->modtype[x] == MOD_TYPE_FXS) {
                              if (wc->mod[x].fxs.palarms)
                                    wc->mod[x].fxs.palarms--;
                        }
            }
            wctdm_receiveprep(wc, ints);
            wctdm_transmitprep(wc, ints);
      }

      return IRQ_RETVAL(1);
}

static int wctdm_voicedaa_insane(struct wctdm *wc, int card)
{
      int blah;
      blah = wctdm_getreg(wc, card, 2);
      if (blah != 0x3)
            return -2;
      blah = wctdm_getreg(wc, card, 11);
      if (debug)
            printk(KERN_DEBUG "VoiceDAA System: %02x\n", blah & 0xf);
      return 0;
}

static int wctdm_proslic_insane(struct wctdm *wc, int card)
{
      int blah,insane_report;
      insane_report=0;

      blah = wctdm_getreg(wc, card, 0);
      if (debug) 
            printk(KERN_DEBUG "ProSLIC on module %d, product %d, version %d\n", card, (blah & 0x30) >> 4, (blah & 0xf));

#if 0
      if ((blah & 0x30) >> 4) {
            printk(KERN_DEBUG "ProSLIC on module %d is not a 3210.\n", card);
            return -1;
      }
#endif
      if (((blah & 0xf) == 0) || ((blah & 0xf) == 0xf)) {
            /* SLIC not loaded */
            return -1;
      }
      if ((blah & 0xf) < 2) {
            printk(KERN_NOTICE "ProSLIC 3210 version %d is too old\n", blah & 0xf);
            return -1;
      }
      if (wctdm_getreg(wc, card, 1) & 0x80)
            /* ProSLIC 3215, not a 3210 */
            wc->flags[card] |= FLAG_3215;

      blah = wctdm_getreg(wc, card, 8);
      if (blah != 0x2) {
            printk(KERN_NOTICE "ProSLIC on module %d insane (1) %d should be 2\n", card, blah);
            return -1;
      } else if ( insane_report)
            printk(KERN_NOTICE "ProSLIC on module %d Reg 8 Reads %d Expected is 0x2\n",card,blah);

      blah = wctdm_getreg(wc, card, 64);
      if (blah != 0x0) {
            printk(KERN_NOTICE "ProSLIC on module %d insane (2)\n", card);
            return -1;
      } else if ( insane_report)
            printk(KERN_NOTICE "ProSLIC on module %d Reg 64 Reads %d Expected is 0x0\n",card,blah);

      blah = wctdm_getreg(wc, card, 11);
      if (blah != 0x33) {
            printk(KERN_NOTICE "ProSLIC on module %d insane (3)\n", card);
            return -1;
      } else if ( insane_report)
            printk(KERN_NOTICE "ProSLIC on module %d Reg 11 Reads %d Expected is 0x33\n",card,blah);

      /* Just be sure it's setup right. */
      wctdm_setreg(wc, card, 30, 0);

      if (debug) 
            printk(KERN_DEBUG "ProSLIC on module %d seems sane.\n", card);
      return 0;
}

static int wctdm_proslic_powerleak_test(struct wctdm *wc, int card)
{
      unsigned long origjiffies;
      unsigned char vbat;

      /* Turn off linefeed */
      wctdm_setreg(wc, card, 64, 0);

      /* Power down */
      wctdm_setreg(wc, card, 14, 0x10);

      /* Wait for one second */
      origjiffies = jiffies;

      while((vbat = wctdm_getreg(wc, card, 82)) > 0x6) {
            if ((jiffies - origjiffies) >= (HZ/2))
                  break;;
      }

      if (vbat < 0x06) {
            printk(KERN_NOTICE "Excessive leakage detected on module %d: %d volts (%02x) after %d ms\n", card,
                   376 * vbat / 1000, vbat, (int)((jiffies - origjiffies) * 1000 / HZ));
            return -1;
      } else if (debug) {
            printk(KERN_NOTICE "Post-leakage voltage: %d volts\n", 376 * vbat / 1000);
      }
      return 0;
}

static int wctdm_powerup_proslic(struct wctdm *wc, int card, int fast)
{
      unsigned char vbat;
      unsigned long origjiffies;
      int lim;

      /* Set period of DC-DC converter to 1/64 khz */
      wctdm_setreg(wc, card, 92, 0xff /* was 0xff */);

      /* Wait for VBat to powerup */
      origjiffies = jiffies;

      /* Disable powerdown */
      wctdm_setreg(wc, card, 14, 0);

      /* If fast, don't bother checking anymore */
      if (fast)
            return 0;

      while((vbat = wctdm_getreg(wc, card, 82)) < 0xc0) {
            /* Wait no more than 500ms */
            if ((jiffies - origjiffies) > HZ/2) {
                  break;
            }
      }

      if (vbat < 0xc0) {
            if (wc->proslic_power == PROSLIC_POWER_UNKNOWN)
                         printk(KERN_NOTICE "ProSLIC on module %d failed to powerup within %d ms (%d mV only)\n\n -- DID YOU REMEMBER TO PLUG IN THE HD POWER CABLE TO THE TDM400P??\n",
                              card, (int)(((jiffies - origjiffies) * 1000 / HZ)),
                              vbat * 375);
            wc->proslic_power = PROSLIC_POWER_WARNED;
            return -1;
      } else if (debug) {
            printk(KERN_DEBUG "ProSLIC on module %d powered up to -%d volts (%02x) in %d ms\n",
                   card, vbat * 376 / 1000, vbat, (int)(((jiffies - origjiffies) * 1000 / HZ)));
      }
      wc->proslic_power = PROSLIC_POWER_ON;

        /* Proslic max allowed loop current, reg 71 LOOP_I_LIMIT */
        /* If out of range, just set it to the default value     */
        lim = (loopcurrent - 20) / 3;
        if ( loopcurrent > 41 ) {
                lim = 0;
                if (debug)
                        printk(KERN_DEBUG "Loop current out of range! Setting to default 20mA!\n");
        }
        else if (debug)
                        printk(KERN_DEBUG "Loop current set to %dmA!\n",(lim*3)+20);
        wctdm_setreg(wc,card,LOOP_I_LIMIT,lim);

      /* Engage DC-DC converter */
      wctdm_setreg(wc, card, 93, 0x19 /* was 0x19 */);
#if 0
      origjiffies = jiffies;
      while(0x80 & wctdm_getreg(wc, card, 93)) {
            if ((jiffies - origjiffies) > 2 * HZ) {
                  printk(KERN_DEBUG "Timeout waiting for DC-DC calibration on module %d\n", card);
                  return -1;
            }
      }

#if 0
      /* Wait a full two seconds */
      while((jiffies - origjiffies) < 2 * HZ);

      /* Just check to be sure */
      vbat = wctdm_getreg(wc, card, 82);
      printk(KERN_DEBUG "ProSLIC on module %d powered up to -%d volts (%02x) in %d ms\n",
                   card, vbat * 376 / 1000, vbat, (int)(((jiffies - origjiffies) * 1000 / HZ)));
#endif
#endif
      return 0;

}

static int wctdm_proslic_manual_calibrate(struct wctdm *wc, int card){
      unsigned long origjiffies;
      unsigned char i;

      wctdm_setreg(wc, card, 21, 0);//(0)  Disable all interupts in DR21
      wctdm_setreg(wc, card, 22, 0);//(0)Disable all interupts in DR21
      wctdm_setreg(wc, card, 23, 0);//(0)Disable all interupts in DR21
      wctdm_setreg(wc, card, 64, 0);//(0)

      wctdm_setreg(wc, card, 97, 0x18); //(0x18)Calibrations without the ADC and DAC offset and without common mode calibration.
      wctdm_setreg(wc, card, 96, 0x47); //(0x47)      Calibrate common mode and differential DAC mode DAC + ILIM

      origjiffies=jiffies;
      while( wctdm_getreg(wc,card,96)!=0 ){
            if((jiffies-origjiffies)>80)
                  return -1;
      }
//Initialized DR 98 and 99 to get consistant results.
// 98 and 99 are the results registers and the search should have same intial conditions.

/*******************************The following is the manual gain mismatch calibration****************************/
/*******************************This is also available as a function *******************************************/
      // Delay 10ms
      origjiffies=jiffies; 
      while((jiffies-origjiffies)<1);
      wctdm_proslic_setreg_indirect(wc, card, 88, 0);
      wctdm_proslic_setreg_indirect(wc, card, 89, 0);
      wctdm_proslic_setreg_indirect(wc, card, 90, 0);
      wctdm_proslic_setreg_indirect(wc, card, 91, 0);
      wctdm_proslic_setreg_indirect(wc, card, 92, 0);
      wctdm_proslic_setreg_indirect(wc, card, 93, 0);

      wctdm_setreg(wc, card, 98, 0x10); // This is necessary if the calibration occurs other than at reset time
      wctdm_setreg(wc, card, 99, 0x10);

      for ( i=0x1f; i>0; i--)
      {
            wctdm_setreg(wc, card, 98, i);
            origjiffies=jiffies; 
            while((jiffies-origjiffies)<4);
            if((wctdm_getreg(wc, card, 88)) == 0)
                  break;
      } // for

      for ( i=0x1f; i>0; i--)
      {
            wctdm_setreg(wc, card, 99, i);
            origjiffies=jiffies; 
            while((jiffies-origjiffies)<4);
            if((wctdm_getreg(wc, card, 89)) == 0)
                  break;
      }//for

/*******************************The preceding is the manual gain mismatch calibration****************************/
/**********************************The following is the longitudinal Balance Cal***********************************/
      wctdm_setreg(wc,card,64,1);
      while((jiffies-origjiffies)<10); // Sleep 100?

      wctdm_setreg(wc, card, 64, 0);
      wctdm_setreg(wc, card, 23, 0x4);  // enable interrupt for the balance Cal
      wctdm_setreg(wc, card, 97, 0x1); // this is a singular calibration bit for longitudinal calibration
      wctdm_setreg(wc, card, 96, 0x40);

      wctdm_getreg(wc, card, 96); /* Read Reg 96 just cause */

      wctdm_setreg(wc, card, 21, 0xFF);
      wctdm_setreg(wc, card, 22, 0xFF);
      wctdm_setreg(wc, card, 23, 0xFF);

      /**The preceding is the longitudinal Balance Cal***/
      return(0);

}
#if 1
static int wctdm_proslic_calibrate(struct wctdm *wc, int card)
{
      unsigned long origjiffies;
      int x;
      /* Perform all calibrations */
      wctdm_setreg(wc, card, 97, 0x1f);
      
      /* Begin, no speedup */
      wctdm_setreg(wc, card, 96, 0x5f);

      /* Wait for it to finish */
      origjiffies = jiffies;
      while(wctdm_getreg(wc, card, 96)) {
            if ((jiffies - origjiffies) > 2 * HZ) {
                  printk(KERN_NOTICE "Timeout waiting for calibration of module %d\n", card);
                  return -1;
            }
      }
      
      if (debug) {
            /* Print calibration parameters */
            printk(KERN_DEBUG "Calibration Vector Regs 98 - 107: \n");
            for (x=98;x<108;x++) {
                  printk(KERN_DEBUG "%d: %02x\n", x, wctdm_getreg(wc, card, x));
            }
      }
      return 0;
}
#endif

static void wait_just_a_bit(int foo)
{
      long newjiffies;
      newjiffies = jiffies + foo;
      while(jiffies < newjiffies);
}

/*********************************************************************
 * Set the hwgain on the analog modules
 *
 * card = the card position for this module (0-23)
 * gain = gain in dB x10 (e.g. -3.5dB  would be gain=-35)
 * tx = (0 for rx; 1 for tx)
 *
 *******************************************************************/
static int wctdm_set_hwgain(struct wctdm *wc, int card, __s32 gain, __u32 tx)
{
      if (!(wc->modtype[card] == MOD_TYPE_FXO)) {
            printk(KERN_NOTICE "Cannot adjust gain.  Unsupported module type!\n");
            return -1;
      }
      if (tx) {
            if (debug)
                  printk(KERN_DEBUG "setting FXO tx gain for card=%d to %d\n", card, gain);
            if (gain >=  -150 && gain <= 0) {
                  wctdm_setreg(wc, card, 38, 16 + (gain/-10));
                  wctdm_setreg(wc, card, 40, 16 + (-gain%10));
            } else if (gain <= 120 && gain > 0) {
                  wctdm_setreg(wc, card, 38, gain/10);
                  wctdm_setreg(wc, card, 40, (gain%10));
            } else {
                  printk(KERN_INFO "FXO tx gain is out of range (%d)\n", gain);
                  return -1;
            }
      } else { /* rx */
            if (debug)
                  printk(KERN_DEBUG "setting FXO rx gain for card=%d to %d\n", card, gain);
            if (gain >=  -150 && gain <= 0) {
                  wctdm_setreg(wc, card, 39, 16+ (gain/-10));
                  wctdm_setreg(wc, card, 41, 16 + (-gain%10));
            } else if (gain <= 120 && gain > 0) {
                  wctdm_setreg(wc, card, 39, gain/10);
                  wctdm_setreg(wc, card, 41, (gain%10));
            } else {
                  printk(KERN_INFO "FXO rx gain is out of range (%d)\n", gain);
                  return -1;
            }
      }

      return 0;
}

static int set_vmwi(struct wctdm * wc, int chan_idx)
{
      struct fxs *const fxs = &wc->mod[chan_idx].fxs;
      if (wc->mod[chan_idx].fxs.vmwi_active_messages){
            wc->mod[chan_idx].fxs.vmwi_lrev = (wc->mod[chan_idx].fxs.vmwisetting.vmwi_type & DAHDI_VMWI_LREV)?1:0;
            wc->mod[chan_idx].fxs.vmwi_hvdc = (wc->mod[chan_idx].fxs.vmwisetting.vmwi_type & DAHDI_VMWI_HVDC)?1:0;
            wc->mod[chan_idx].fxs.vmwi_hvac = (wc->mod[chan_idx].fxs.vmwisetting.vmwi_type & DAHDI_VMWI_HVAC)?1:0;
      } else {
            wc->mod[chan_idx].fxs.vmwi_lrev = 0;
            wc->mod[chan_idx].fxs.vmwi_hvdc = 0;
            wc->mod[chan_idx].fxs.vmwi_hvac = 0;
      }

      if (debug) {
            printk(KERN_DEBUG "Setting VMWI on channel %d, messages=%d, lrev=%d, hvdc=%d, hvac=%d\n",
                     chan_idx,
        wc->mod[chan_idx].fxs.vmwi_active_messages,
   wc->mod[chan_idx].fxs.vmwi_lrev,
   wc->mod[chan_idx].fxs.vmwi_hvdc,
   wc->mod[chan_idx].fxs.vmwi_hvac
                    );
      }
      if (POLARITY_XOR(chan_idx)) {
            wc->mod[chan_idx].fxs.idletxhookstate |= SLIC_LF_REVMASK;
            /* Do not set while currently ringing or open */
            if ((fxs->lasttxhook != SLIC_LF_RINGING) &&
                (fxs->lasttxhook != SLIC_LF_OPEN)) {
                  fxs->lasttxhook |= SLIC_LF_REVMASK;
                  wctdm_setreg(wc, chan_idx, 64, fxs->lasttxhook);
            }
      } else {
            wc->mod[chan_idx].fxs.idletxhookstate &= ~SLIC_LF_REVMASK;
            /* Do not set while currently ringing or open */
            if ((fxs->lasttxhook != SLIC_LF_RINGING) &&
                (fxs->lasttxhook != SLIC_LF_OPEN)) {
                  wc->mod[chan_idx].fxs.lasttxhook &= ~SLIC_LF_REVMASK;
                  wctdm_setreg(wc, chan_idx, 64, wc->mod[chan_idx].fxs.lasttxhook);
            }
      }
      return 0;
}

static int wctdm_init_voicedaa(struct wctdm *wc, int card, int fast, int manual, int sane)
{
      unsigned char reg16=0, reg26=0, reg30=0, reg31=0;
      long newjiffies;
      wc->modtype[card] = MOD_TYPE_FXO;
      /* Sanity check the ProSLIC */
      reset_spi(wc, card);
      if (!sane && wctdm_voicedaa_insane(wc, card))
            return -2;

      /* Software reset */
      wctdm_setreg(wc, card, 1, 0x80);

      /* Wait just a bit */
      wait_just_a_bit(HZ/10);

      /* Enable PCM, ulaw */
      if (alawoverride){
            wctdm_setreg(wc, card, 33, 0x20);
      } else {
            wctdm_setreg(wc, card, 33, 0x28);
      }

      /* Set On-hook speed, Ringer impedence, and ringer threshold */
      reg16 |= (fxo_modes[_opermode].ohs << 6);
      reg16 |= (fxo_modes[_opermode].rz << 1);
      reg16 |= (fxo_modes[_opermode].rt);
      wctdm_setreg(wc, card, 16, reg16);

      if(fwringdetect) {
            /* Enable ring detector full-wave rectifier mode */
            wctdm_setreg(wc, card, 18, 2);
            wctdm_setreg(wc, card, 24, 0);
      } else { 
            /* Set to the device defaults */
            wctdm_setreg(wc, card, 18, 0);
            wctdm_setreg(wc, card, 24, 0x19);
      }

      /* Set DC Termination:
         Tip/Ring voltage adjust, minimum operational current, current limitation */
      reg26 |= (fxo_modes[_opermode].dcv << 6);
      reg26 |= (fxo_modes[_opermode].mini << 4);
      reg26 |= (fxo_modes[_opermode].ilim << 1);
      wctdm_setreg(wc, card, 26, reg26);

      /* Set AC Impedence */
      reg30 = (fxo_modes[_opermode].acim);
      wctdm_setreg(wc, card, 30, reg30);

      /* Misc. DAA parameters */
      if (fastpickup)
            reg31 = 0xb3;
      else
            reg31 = 0xa3;

      reg31 |= (fxo_modes[_opermode].ohs2 << 3);
      wctdm_setreg(wc, card, 31, reg31);

      /* Set Transmit/Receive timeslot */
      wctdm_setreg(wc, card, 34, (3-card) * 8);
      wctdm_setreg(wc, card, 35, 0x00);
      wctdm_setreg(wc, card, 36, (3-card) * 8);
      wctdm_setreg(wc, card, 37, 0x00);

      /* Enable ISO-Cap */
      wctdm_setreg(wc, card, 6, 0x00);

      if (fastpickup)
            wctdm_setreg(wc, card, 17, wctdm_getreg(wc, card, 17) | 0x20);

      /* Wait 1000ms for ISO-cap to come up */
      newjiffies = jiffies;
      newjiffies += 2 * HZ;
      while((jiffies < newjiffies) && !(wctdm_getreg(wc, card, 11) & 0xf0))
            wait_just_a_bit(HZ/10);

      if (!(wctdm_getreg(wc, card, 11) & 0xf0)) {
            printk(KERN_NOTICE "VoiceDAA did not bring up ISO link properly!\n");
            return -1;
      }
      if (debug)
            printk(KERN_DEBUG "ISO-Cap is now up, line side: %02x rev %02x\n", 
                   wctdm_getreg(wc, card, 11) >> 4,
                   (wctdm_getreg(wc, card, 13) >> 2) & 0xf);
      /* Enable on-hook line monitor */
      wctdm_setreg(wc, card, 5, 0x08);

      /* Take values for fxotxgain and fxorxgain and apply them to module */
      wctdm_set_hwgain(wc, card, fxotxgain, 1);
      wctdm_set_hwgain(wc, card, fxorxgain, 0);

      /* NZ -- crank the tx gain up by 7 dB */
      if (!strcmp(fxo_modes[_opermode].name, "NEWZEALAND")) {
            printk(KERN_INFO "Adjusting gain\n");
            wctdm_set_hwgain(wc, card, 7, 1);
      }
      
      if(debug)
            printk(KERN_DEBUG "DEBUG fxotxgain:%i.%i fxorxgain:%i.%i\n", (wctdm_getreg(wc, card, 38)/16)?-(wctdm_getreg(wc, card, 38) - 16) : wctdm_getreg(wc, card, 38), (wctdm_getreg(wc, card, 40)/16)? -(wctdm_getreg(wc, card, 40) - 16):wctdm_getreg(wc, card, 40), (wctdm_getreg(wc, card, 39)/16)? -(wctdm_getreg(wc, card, 39) - 16) : wctdm_getreg(wc, card, 39),(wctdm_getreg(wc, card, 41)/16)?-(wctdm_getreg(wc, card, 41) - 16):wctdm_getreg(wc, card, 41));

      return 0;
            
}

static int wctdm_init_proslic(struct wctdm *wc, int card, int fast, int manual, int sane)
{

      unsigned short tmp[5];
      unsigned char r19,r9;
      int x;
      int fxsmode=0;

      /* Sanity check the ProSLIC */
      if (!sane && wctdm_proslic_insane(wc, card))
            return -2;
      
      /* default messages to none and method to FSK */
      memset(&wc->mod[card].fxs.vmwisetting, 0, sizeof(wc->mod[card].fxs.vmwisetting));
      wc->mod[card].fxs.vmwi_lrev = 0;
      wc->mod[card].fxs.vmwi_hvdc = 0;
      wc->mod[card].fxs.vmwi_hvac = 0;
      
                        
      /* By default, don't send on hook */
      if (!reversepolarity != !wc->mod[card].fxs.reversepolarity)
            wc->mod[card].fxs.idletxhookstate = SLIC_LF_ACTIVE_REV;
      else
            wc->mod[card].fxs.idletxhookstate = SLIC_LF_ACTIVE_FWD;

      if (sane) {
            /* Make sure we turn off the DC->DC converter to prevent anything from blowing up */
            wctdm_setreg(wc, card, 14, 0x10);
      }

      if (wctdm_proslic_init_indirect_regs(wc, card)) {
            printk(KERN_INFO "Indirect Registers failed to initialize on module %d.\n", card);
            return -1;
      }

      /* Clear scratch pad area */
      wctdm_proslic_setreg_indirect(wc, card, 97,0);

      /* Clear digital loopback */
      wctdm_setreg(wc, card, 8, 0);

      /* Revision C optimization */
      wctdm_setreg(wc, card, 108, 0xeb);

      /* Disable automatic VBat switching for safety to prevent
         Q7 from accidently turning on and burning out. */
      wctdm_setreg(wc, card, 67, 0x07);  /* Note, if pulse dialing has problems at high REN loads
                                    change this to 0x17 */

      /* Turn off Q7 */
      wctdm_setreg(wc, card, 66, 1);

      /* Flush ProSLIC digital filters by setting to clear, while
         saving old values */
      for (x=0;x<5;x++) {
            tmp[x] = wctdm_proslic_getreg_indirect(wc, card, x + 35);
            wctdm_proslic_setreg_indirect(wc, card, x + 35, 0x8000);
      }

      /* Power up the DC-DC converter */
      if (wctdm_powerup_proslic(wc, card, fast)) {
            printk(KERN_NOTICE "Unable to do INITIAL ProSLIC powerup on module %d\n", card);
            return -1;
      }

      if (!fast) {

            /* Check for power leaks */
            if (wctdm_proslic_powerleak_test(wc, card)) {
                  printk(KERN_NOTICE "ProSLIC module %d failed leakage test.  Check for short circuit\n", card);
            }
            /* Power up again */
            if (wctdm_powerup_proslic(wc, card, fast)) {
                  printk(KERN_NOTICE "Unable to do FINAL ProSLIC powerup on module %d\n", card);
                  return -1;
            }
#ifndef NO_CALIBRATION
            /* Perform calibration */
            if(manual) {
                  if (wctdm_proslic_manual_calibrate(wc, card)) {
                        //printk(KERN_NOTICE "Proslic failed on Manual Calibration\n");
                        if (wctdm_proslic_manual_calibrate(wc, card)) {
                              printk(KERN_NOTICE "Proslic Failed on Second Attempt to Calibrate Manually. (Try -DNO_CALIBRATION in Makefile)\n");
                              return -1;
                        }
                        printk(KERN_NOTICE "Proslic Passed Manual Calibration on Second Attempt\n");
                  }
            }
            else {
                  if(wctdm_proslic_calibrate(wc, card))  {
                        //printk(KERN_NOTICE "ProSlic died on Auto Calibration.\n");
                        if (wctdm_proslic_calibrate(wc, card)) {
                              printk(KERN_NOTICE "Proslic Failed on Second Attempt to Auto Calibrate\n");
                              return -1;
                        }
                        printk(KERN_NOTICE "Proslic Passed Auto Calibration on Second Attempt\n");
                  }
            }
            /* Perform DC-DC calibration */
            wctdm_setreg(wc, card, 93, 0x99);
            r19 = wctdm_getreg(wc, card, 107);
            if ((r19 < 0x2) || (r19 > 0xd)) {
                  printk(KERN_NOTICE "DC-DC cal has a surprising direct 107 of 0x%02x!\n", r19);
                  wctdm_setreg(wc, card, 107, 0x8);
            }

            /* Save calibration vectors */
            for (x=0;x<NUM_CAL_REGS;x++)
                  wc->mod[card].fxs.calregs.vals[x] = wctdm_getreg(wc, card, 96 + x);
#endif

      } else {
            /* Restore calibration registers */
            for (x=0;x<NUM_CAL_REGS;x++)
                  wctdm_setreg(wc, card, 96 + x, wc->mod[card].fxs.calregs.vals[x]);
      }
      /* Calibration complete, restore original values */
      for (x=0;x<5;x++) {
            wctdm_proslic_setreg_indirect(wc, card, x + 35, tmp[x]);
      }

      if (wctdm_proslic_verify_indirect_regs(wc, card)) {
            printk(KERN_INFO "Indirect Registers failed verification.\n");
            return -1;
      }


#if 0
    /* Disable Auto Power Alarm Detect and other "features" */
    wctdm_setreg(wc, card, 67, 0x0e);
    blah = wctdm_getreg(wc, card, 67);
#endif

#if 0
    if (wctdm_proslic_setreg_indirect(wc, card, 97, 0x0)) { // Stanley: for the bad recording fix
             printk(KERN_INFO "ProSlic IndirectReg Died.\n");
             return -1;
      }
#endif

    if (alawoverride)
      wctdm_setreg(wc, card, 1, 0x20);
    else
      wctdm_setreg(wc, card, 1, 0x28);
      // U-Law 8-bit interface
    wctdm_setreg(wc, card, 2, (3-card) * 8);    // Tx Start count low byte  0
    wctdm_setreg(wc, card, 3, 0);    // Tx Start count high byte 0
    wctdm_setreg(wc, card, 4, (3-card) * 8);    // Rx Start count low byte  0
    wctdm_setreg(wc, card, 5, 0);    // Rx Start count high byte 0
    wctdm_setreg(wc, card, 18, 0xff);     // clear all interrupt
    wctdm_setreg(wc, card, 19, 0xff);
    wctdm_setreg(wc, card, 20, 0xff);
    wctdm_setreg(wc, card, 73, 0x04);
      if (fxshonormode) {
            fxsmode = acim2tiss[fxo_modes[_opermode].acim];
            wctdm_setreg(wc, card, 10, 0x08 | fxsmode);
            if (fxo_modes[_opermode].ring_osc)
                  wctdm_proslic_setreg_indirect(wc, card, 20, fxo_modes[_opermode].ring_osc);
            if (fxo_modes[_opermode].ring_x)
                  wctdm_proslic_setreg_indirect(wc, card, 21, fxo_modes[_opermode].ring_x);
      }
    if (lowpower)
      wctdm_setreg(wc, card, 72, 0x10);

#if 0
    wctdm_setreg(wc, card, 21, 0x00);     // enable interrupt
    wctdm_setreg(wc, card, 22, 0x02);     // Loop detection interrupt
    wctdm_setreg(wc, card, 23, 0x01);     // DTMF detection interrupt
#endif

#if 0
    /* Enable loopback */
    wctdm_setreg(wc, card, 8, 0x2);
    wctdm_setreg(wc, card, 14, 0x0);
    wctdm_setreg(wc, card, 64, 0x0);
    wctdm_setreg(wc, card, 1, 0x08);
#endif

      if (fastringer) {
            /* Speed up Ringer */
            wctdm_proslic_setreg_indirect(wc, card, 20, 0x7e6d);
            wctdm_proslic_setreg_indirect(wc, card, 21, 0x01b9);
            /* Beef up Ringing voltage to 89V */
            if (boostringer) {
                  wctdm_setreg(wc, card, 74, 0x3f);
                  if (wctdm_proslic_setreg_indirect(wc, card, 21, 0x247)) 
                        return -1;
                  printk(KERN_INFO "Boosting fast ringer on slot %d (89V peak)\n", card + 1);
            } else if (lowpower) {
                  if (wctdm_proslic_setreg_indirect(wc, card, 21, 0x14b)) 
                        return -1;
                  printk(KERN_INFO "Reducing fast ring power on slot %d (50V peak)\n", card + 1);
            } else
                  printk(KERN_INFO "Speeding up ringer on slot %d (25Hz)\n", card + 1);
      } else {
            /* Beef up Ringing voltage to 89V */
            if (boostringer) {
                  wctdm_setreg(wc, card, 74, 0x3f);
                  if (wctdm_proslic_setreg_indirect(wc, card, 21, 0x1d1)) 
                        return -1;
                  printk(KERN_INFO "Boosting ringer on slot %d (89V peak)\n", card + 1);
            } else if (lowpower) {
                  if (wctdm_proslic_setreg_indirect(wc, card, 21, 0x108)) 
                        return -1;
                  printk(KERN_INFO "Reducing ring power on slot %d (50V peak)\n", card + 1);
            }
      }

      if(fxstxgain || fxsrxgain) {
            r9 = wctdm_getreg(wc, card, 9);
            switch (fxstxgain) {
            
                  case 35:
                        r9+=8;
                        break;
                  case -35:
                        r9+=4;
                        break;
                  case 0: 
                        break;
            }
      
            switch (fxsrxgain) {
                  
                  case 35:
                        r9+=2;
                        break;
                  case -35:
                        r9+=1;
                        break;
                  case 0:
                        break;
            }
            wctdm_setreg(wc,card,9,r9);
      }

      if(debug)
                  printk(KERN_DEBUG "DEBUG: fxstxgain:%s fxsrxgain:%s\n",((wctdm_getreg(wc, card, 9)/8) == 1)?"3.5":(((wctdm_getreg(wc,card,9)/4) == 1)?"-3.5":"0.0"),((wctdm_getreg(wc, card, 9)/2) == 1)?"3.5":((wctdm_getreg(wc,card,9)%2)?"-3.5":"0.0"));

      wc->mod[card].fxs.lasttxhook = wc->mod[card].fxs.idletxhookstate;
      wctdm_setreg(wc, card, 64, wc->mod[card].fxs.lasttxhook);
      return 0;
}

static int wctdm_ioctl(struct dahdi_chan *chan, unsigned int cmd, unsigned long data)
{
      struct wctdm_stats stats;
      struct wctdm_regs regs;
      struct wctdm_regop regop;
      struct wctdm_echo_coefs echoregs;
      struct dahdi_hwgain hwgain;
      struct wctdm *wc = chan->pvt;
      struct fxs *const fxs = &wc->mod[chan->chanpos - 1].fxs;
      int x;
      switch (cmd) {
      case DAHDI_ONHOOKTRANSFER:
            if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS)
                  return -EINVAL;
            if (get_user(x, (__user int *) data))
                  return -EFAULT;
            wc->mod[chan->chanpos - 1].fxs.ohttimer = x << 3;

            /* Active mode when idle */
            fxs->idletxhookstate = POLARITY_XOR(chan->chanpos - 1) ?
                              SLIC_LF_ACTIVE_REV :
                              SLIC_LF_ACTIVE_FWD;

            if ((fxs->lasttxhook == SLIC_LF_ACTIVE_FWD) ||
                (fxs->lasttxhook == SLIC_LF_ACTIVE_REV)) {
                  /* Apply the change if appropriate */
                  fxs->lasttxhook = POLARITY_XOR(chan->chanpos - 1) ?
                                    SLIC_LF_OHTRAN_REV :
                                    SLIC_LF_OHTRAN_FWD;
                  wctdm_setreg(wc, chan->chanpos - 1, 64, wc->mod[chan->chanpos - 1].fxs.lasttxhook);
            }
            break;
      case DAHDI_SETPOLARITY:
            if (get_user(x, (__user int *) data))
                  return -EFAULT;
            if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS)
                  return -EINVAL;
            /* Can't change polarity while ringing or when open */
            if ((fxs->lasttxhook == SLIC_LF_RINGING) ||
                (fxs->lasttxhook == SLIC_LF_OPEN))
                  return -EINVAL;
            
            wc->mod[chan->chanpos - 1].fxs.reversepolarity = x;
            if ( POLARITY_XOR(chan->chanpos - 1) )
                  fxs->lasttxhook |= SLIC_LF_REVMASK;
            else
                  fxs->lasttxhook &= ~SLIC_LF_REVMASK;
            wctdm_setreg(wc, chan->chanpos - 1, 64, wc->mod[chan->chanpos - 1].fxs.lasttxhook);
            break;
      case DAHDI_VMWI_CONFIG:
            if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS)
                  return -EINVAL;
            if (copy_from_user(&(wc->mod[chan->chanpos - 1].fxs.vmwisetting), (__user void *) data, sizeof(wc->mod[chan->chanpos - 1].fxs.vmwisetting)))
                  return -EFAULT;
            set_vmwi(wc, chan->chanpos - 1);
            break;
      case DAHDI_VMWI:
            if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS)
                  return -EINVAL;
            if (get_user(x, (__user int *) data))
                  return -EFAULT;
            if (0 > x)
                  return -EFAULT;
            wc->mod[chan->chanpos - 1].fxs.vmwi_active_messages = x;
            set_vmwi(wc, chan->chanpos - 1);
            break;
      case WCTDM_GET_STATS:
            if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXS) {
                  stats.tipvolt = wctdm_getreg(wc, chan->chanpos - 1, 80) * -376;
                  stats.ringvolt = wctdm_getreg(wc, chan->chanpos - 1, 81) * -376;
                  stats.batvolt = wctdm_getreg(wc, chan->chanpos - 1, 82) * -376;
            } else if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXO) {
                  stats.tipvolt = (signed char)wctdm_getreg(wc, chan->chanpos - 1, 29) * 1000;
                  stats.ringvolt = (signed char)wctdm_getreg(wc, chan->chanpos - 1, 29) * 1000;
                  stats.batvolt = (signed char)wctdm_getreg(wc, chan->chanpos - 1, 29) * 1000;
            } else 
                  return -EINVAL;
            if (copy_to_user((__user void *)data, &stats, sizeof(stats)))
                  return -EFAULT;
            break;
      case WCTDM_GET_REGS:
            if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXS) {
                  for (x=0;x<NUM_INDIRECT_REGS;x++)
                        regs.indirect[x] = wctdm_proslic_getreg_indirect(wc, chan->chanpos -1, x);
                  for (x=0;x<NUM_REGS;x++)
                        regs.direct[x] = wctdm_getreg(wc, chan->chanpos - 1, x);
            } else {
                  memset(&regs, 0, sizeof(regs));
                  for (x=0;x<NUM_FXO_REGS;x++)
                        regs.direct[x] = wctdm_getreg(wc, chan->chanpos - 1, x);
            }
            if (copy_to_user((__user void *)data, &regs, sizeof(regs)))
                  return -EFAULT;
            break;
      case WCTDM_SET_REG:
            if (copy_from_user(&regop, (__user void *) data, sizeof(regop)))
                  return -EFAULT;
            if (regop.indirect) {
                  if (wc->modtype[chan->chanpos - 1] != MOD_TYPE_FXS)
                        return -EINVAL;
                  printk(KERN_INFO "Setting indirect %d to 0x%04x on %d\n", regop.reg, regop.val, chan->chanpos);
                  wctdm_proslic_setreg_indirect(wc, chan->chanpos - 1, regop.reg, regop.val);
            } else {
                  regop.val &= 0xff;
                  printk(KERN_INFO "Setting direct %d to %04x on %d\n", regop.reg, regop.val, chan->chanpos);
                  wctdm_setreg(wc, chan->chanpos - 1, regop.reg, regop.val);
            }
            break;
      case WCTDM_SET_ECHOTUNE:
            printk(KERN_INFO "-- Setting echo registers: \n");
            if (copy_from_user(&echoregs, (__user void *)data, sizeof(echoregs)))
                  return -EFAULT;

            if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXO) {
                  /* Set the ACIM register */
                  wctdm_setreg(wc, chan->chanpos - 1, 30, echoregs.acim);

                  /* Set the digital echo canceller registers */
                  wctdm_setreg(wc, chan->chanpos - 1, 45, echoregs.coef1);
                  wctdm_setreg(wc, chan->chanpos - 1, 46, echoregs.coef2);
                  wctdm_setreg(wc, chan->chanpos - 1, 47, echoregs.coef3);
                  wctdm_setreg(wc, chan->chanpos - 1, 48, echoregs.coef4);
                  wctdm_setreg(wc, chan->chanpos - 1, 49, echoregs.coef5);
                  wctdm_setreg(wc, chan->chanpos - 1, 50, echoregs.coef6);
                  wctdm_setreg(wc, chan->chanpos - 1, 51, echoregs.coef7);
                  wctdm_setreg(wc, chan->chanpos - 1, 52, echoregs.coef8);

                  printk(KERN_INFO "-- Set echo registers successfully\n");

                  break;
            } else {
                  return -EINVAL;

            }
            break;
      case DAHDI_SET_HWGAIN:
            if (copy_from_user(&hwgain, (__user void *) data, sizeof(hwgain)))
                  return -EFAULT;

            wctdm_set_hwgain(wc, chan->chanpos-1, hwgain.newgain, hwgain.tx);

            if (debug)
                  printk(KERN_DEBUG "Setting hwgain on channel %d to %d for %s direction\n", 
                        chan->chanpos-1, hwgain.newgain, hwgain.tx ? "tx" : "rx");
            break;
      default:
            return -ENOTTY;
      }
      return 0;

}

static int wctdm_open(struct dahdi_chan *chan)
{
      struct wctdm *wc = chan->pvt;
      if (!(wc->cardflag & (1 << (chan->chanpos - 1))))
            return -ENODEV;
      if (wc->dead)
            return -ENODEV;
      wc->usecount++;
      try_module_get(THIS_MODULE);
      return 0;
}

static int wctdm_watchdog(struct dahdi_span *span, int event)
{
      printk(KERN_INFO "TDM: Restarting DMA\n");
      wctdm_restart_dma(span->pvt);
      return 0;
}

static int wctdm_close(struct dahdi_chan *chan)
{
      struct wctdm *wc = chan->pvt;
      wc->usecount--;
      module_put(THIS_MODULE);
      if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXS) {
            int idlehookstate;
            idlehookstate = POLARITY_XOR(chan->chanpos - 1) ?
                                    SLIC_LF_ACTIVE_REV :
                                    SLIC_LF_ACTIVE_FWD;
            wc->mod[chan->chanpos - 1].fxs.idletxhookstate = idlehookstate;
      }
      /* If we're dead, release us now */
      if (!wc->usecount && wc->dead) 
            wctdm_release(wc);
      return 0;
}

static int wctdm_hooksig(struct dahdi_chan *chan, enum dahdi_txsig txsig)
{
      struct wctdm *wc = chan->pvt;

      if (wc->modtype[chan->chanpos - 1] == MOD_TYPE_FXO) {
            /* XXX Enable hooksig for FXO XXX */
            switch(txsig) {
            case DAHDI_TXSIG_START:
            case DAHDI_TXSIG_OFFHOOK:
                  wc->mod[chan->chanpos - 1].fxo.offhook = 1;
                  wctdm_setreg(wc, chan->chanpos - 1, 5, 0x9);
                  break;
            case DAHDI_TXSIG_ONHOOK:
                  wc->mod[chan->chanpos - 1].fxo.offhook = 0;
                  wctdm_setreg(wc, chan->chanpos - 1, 5, 0x8);
                  break;
            default:
                  printk(KERN_NOTICE "wcfxo: Can't set tx state to %d\n", txsig);
            }
      } else {
            struct fxs *const fxs = &wc->mod[chan->chanpos - 1].fxs;
            switch(txsig) {
            case DAHDI_TXSIG_ONHOOK:
                  switch(chan->sig) {
                  case DAHDI_SIG_FXOKS:
                  case DAHDI_SIG_FXOLS:
                        fxs->lasttxhook = fxs->vmwi_hvac ?
                                          SLIC_LF_RINGING :
                                          fxs->idletxhookstate;
                        break;
                  case DAHDI_SIG_EM:
                        fxs->lasttxhook = fxs->idletxhookstate;
                        break;
                  case DAHDI_SIG_FXOGS:
                        fxs->lasttxhook = SLIC_LF_TIP_OPEN;
                        break;
                  }
                  break;
            case DAHDI_TXSIG_OFFHOOK:
                  switch(chan->sig) {
                  case DAHDI_SIG_EM:
                        fxs->lasttxhook = SLIC_LF_ACTIVE_REV;
                        break;
                  default:
                        fxs->lasttxhook = fxs->idletxhookstate;
                        break;
                  }
                  break;
            case DAHDI_TXSIG_START:
                  fxs->lasttxhook = SLIC_LF_RINGING;
                  break;
            case DAHDI_TXSIG_KEWL:
                  fxs->lasttxhook = SLIC_LF_OPEN;
                  break;
            default:
                  printk(KERN_NOTICE "wctdm: Can't set tx state to %d\n", txsig);
            }
            if (debug) {
                  printk(KERN_DEBUG
                         "Setting FXS hook state to %d (%02x)\n",
                         txsig, fxs->lasttxhook);
            }

#if 1
            wctdm_setreg(wc, chan->chanpos - 1, 64, fxs->lasttxhook);
#endif
      }
      return 0;
}

static int wctdm_initialize(struct wctdm *wc)
{
      int x;

      /* DAHDI stuff */
      sprintf(wc->span.name, "WCTDM/%d", wc->pos);
      snprintf(wc->span.desc, sizeof(wc->span.desc) - 1, "%s Board %d", wc->variety, wc->pos + 1);
      snprintf(wc->span.location, sizeof(wc->span.location) - 1,
             "PCI Bus %02d Slot %02d", wc->dev->bus->number, PCI_SLOT(wc->dev->devfn) + 1);
      wc->span.manufacturer = "Digium";
      dahdi_copy_string(wc->span.devicetype, wc->variety, sizeof(wc->span.devicetype));
      if (alawoverride) {
            printk(KERN_INFO "ALAW override parameter detected.  Device will be operating in ALAW\n");
            wc->span.deflaw = DAHDI_LAW_ALAW;
      } else {
            wc->span.deflaw = DAHDI_LAW_MULAW;
      }
      for (x = 0; x < NUM_CARDS; x++) {
            sprintf(wc->chans[x]->name, "WCTDM/%d/%d", wc->pos, x);
            wc->chans[x]->sigcap = DAHDI_SIG_FXOKS | DAHDI_SIG_FXOLS | DAHDI_SIG_FXOGS | DAHDI_SIG_SF | DAHDI_SIG_EM | DAHDI_SIG_CLEAR;
            wc->chans[x]->sigcap |= DAHDI_SIG_FXSKS | DAHDI_SIG_FXSLS | DAHDI_SIG_SF | DAHDI_SIG_CLEAR;
            wc->chans[x]->chanpos = x+1;
            wc->chans[x]->pvt = wc;
      }
      wc->span.chans = wc->chans;
      wc->span.channels = NUM_CARDS;
      wc->span.hooksig = wctdm_hooksig;
      wc->span.irq = wc->dev->irq;
      wc->span.open = wctdm_open;
      wc->span.close = wctdm_close;
      wc->span.flags = DAHDI_FLAG_RBS;
      wc->span.ioctl = wctdm_ioctl;
      wc->span.watchdog = wctdm_watchdog;
      init_waitqueue_head(&wc->span.maintq);

      wc->span.pvt = wc;
      if (dahdi_register(&wc->span, 0)) {
            printk(KERN_NOTICE "Unable to register span with DAHDI\n");
            return -1;
      }
      return 0;
}

static void wctdm_post_initialize(struct wctdm *wc)
{
      int x;

      /* Finalize signalling  */
      for (x = 0; x < NUM_CARDS; x++) {
            if (wc->cardflag & (1 << x)) {
                  if (wc->modtype[x] == MOD_TYPE_FXO)
                        wc->chans[x]->sigcap = DAHDI_SIG_FXSKS | DAHDI_SIG_FXSLS | DAHDI_SIG_SF | DAHDI_SIG_CLEAR;
                  else
                        wc->chans[x]->sigcap = DAHDI_SIG_FXOKS | DAHDI_SIG_FXOLS | DAHDI_SIG_FXOGS | DAHDI_SIG_SF | DAHDI_SIG_EM | DAHDI_SIG_CLEAR;
            } else if (!(wc->chans[x]->sigcap & DAHDI_SIG_BROKEN)) {
                  wc->chans[x]->sigcap = 0;
            }
      }
}

static int wctdm_hardware_init(struct wctdm *wc)
{
      /* Hardware stuff */
      unsigned char ver;
      unsigned char x,y;
      int failed;

      /* Signal Reset */
      outb(0x01, wc->ioaddr + WC_CNTL);

      /* Check Freshmaker chip */
      x=inb(wc->ioaddr + WC_CNTL);
      ver = __wctdm_getcreg(wc, WC_VER);
      failed = 0;
      if (ver != 0x59) {
            printk(KERN_INFO "Freshmaker version: %02x\n", ver);
            for (x=0;x<255;x++) {
                  /* Test registers */
                  if (ver >= 0x70) {
                        __wctdm_setcreg(wc, WC_CS, x);
                        y = __wctdm_getcreg(wc, WC_CS);
                  } else {
                        __wctdm_setcreg(wc, WC_TEST, x);
                        y = __wctdm_getcreg(wc, WC_TEST);
                  }
                  if (x != y) {
                        printk(KERN_INFO "%02x != %02x\n", x, y);
                        failed++;
                  }
            }
            if (!failed) {
                  printk(KERN_INFO "Freshmaker passed register test\n");
            } else {
                  printk(KERN_NOTICE "Freshmaker failed register test\n");
                  return -1;
            }
            /* Go to half-duty FSYNC */
            __wctdm_setcreg(wc, WC_SYNC, 0x01);
            y = __wctdm_getcreg(wc, WC_SYNC);
      } else {
            printk(KERN_INFO "No freshmaker chip\n");
      }

      /* Reset PCI Interface chip and registers (and serial) */
      outb(0x06, wc->ioaddr + WC_CNTL);
      /* Setup our proper outputs for when we switch for our "serial" port */
      wc->ios = BIT_CS | BIT_SCLK | BIT_SDI;

      outb(wc->ios, wc->ioaddr + WC_AUXD);

      /* Set all to outputs except AUX 5, which is an input */
      outb(0xdf, wc->ioaddr + WC_AUXC);

      /* Select alternate function for AUX0 */
      outb(0x4, wc->ioaddr + WC_AUXFUNC);
      
      /* Wait 1/4 of a sec */
      wait_just_a_bit(HZ/4);

      /* Back to normal, with automatic DMA wrap around */
      outb(0x30 | 0x01, wc->ioaddr + WC_CNTL);
      
      /* Make sure serial port and DMA are out of reset */
      outb(inb(wc->ioaddr + WC_CNTL) & 0xf9, wc->ioaddr + WC_CNTL);
      
      /* Configure serial port for MSB->LSB operation */
      outb(0xc1, wc->ioaddr + WC_SERCTL);

      /* Delay FSC by 0 so it's properly aligned */
      outb(0x0, wc->ioaddr + WC_FSCDELAY);

      /* Setup DMA Addresses */
      outl(wc->writedma,                    wc->ioaddr + WC_DMAWS);           /* Write start */
      outl(wc->writedma + DAHDI_CHUNKSIZE * 4 - 4, wc->ioaddr + WC_DMAWI);          /* Middle (interrupt) */
      outl(wc->writedma + DAHDI_CHUNKSIZE * 8 - 4, wc->ioaddr + WC_DMAWE);                /* End */
      
      outl(wc->readdma,                          wc->ioaddr + WC_DMARS);      /* Read start */
      outl(wc->readdma + DAHDI_CHUNKSIZE * 4 - 4,      wc->ioaddr + WC_DMARI);      /* Middle (interrupt) */
      outl(wc->readdma + DAHDI_CHUNKSIZE * 8 - 4, wc->ioaddr + WC_DMARE);     /* End */
      
      /* Clear interrupts */
      outb(0xff, wc->ioaddr + WC_INTSTAT);

      /* Wait 1/4 of a second more */
      wait_just_a_bit(HZ/4);

      for (x = 0; x < NUM_CARDS; x++) {
            int sane=0,ret=0,readi=0;
#if 1
            /* Init with Auto Calibration */
            if (!(ret=wctdm_init_proslic(wc, x, 0, 0, sane))) {
                  wc->cardflag |= (1 << x);
                        if (debug) {
                                readi = wctdm_getreg(wc,x,LOOP_I_LIMIT);
                                printk(KERN_DEBUG "Proslic module %d loop current is %dmA\n",x,
                                ((readi*3)+20));
                        }
                  printk(KERN_INFO "Module %d: Installed -- AUTO FXS/DPO\n",x);
            } else {
                  if(ret!=-2) {
                        sane=1;
                        /* Init with Manual Calibration */
                        if (!wctdm_init_proslic(wc, x, 0, 1, sane)) {
                              wc->cardflag |= (1 << x);
                                if (debug) {
                                        readi = wctdm_getreg(wc,x,LOOP_I_LIMIT);
                                        printk(KERN_DEBUG "Proslic module %d loop current is %dmA\n",x,
                                        ((readi*3)+20));
                                }
                              printk(KERN_INFO "Module %d: Installed -- MANUAL FXS\n",x);
                        } else {
                              printk(KERN_NOTICE "Module %d: FAILED FXS (%s)\n", x, fxshonormode ? fxo_modes[_opermode].name : "FCC");
                              wc->chans[x]->sigcap = __DAHDI_SIG_FXO | DAHDI_SIG_BROKEN;
                        } 
                  } else if (!(ret = wctdm_init_voicedaa(wc, x, 0, 0, sane))) {
                        wc->cardflag |= (1 << x);
                        printk(KERN_INFO "Module %d: Installed -- AUTO FXO (%s mode)\n",x, fxo_modes[_opermode].name);
                  } else
                        printk(KERN_NOTICE "Module %d: Not installed\n", x);
            }
#endif
      }

      /* Return error if nothing initialized okay. */
      if (!wc->cardflag && !timingonly)
            return -1;
      __wctdm_setcreg(wc, WC_SYNC, (wc->cardflag << 1) | 0x1);
      return 0;
}

static void wctdm_enable_interrupts(struct wctdm *wc)
{
      /* Enable interrupts (we care about all of them) */
      outb(0x3f, wc->ioaddr + WC_MASK0);
      /* No external interrupts */
      outb(0x00, wc->ioaddr + WC_MASK1);
}

static void wctdm_restart_dma(struct wctdm *wc)
{
      /* Reset Master and TDM */
      outb(0x01, wc->ioaddr + WC_CNTL);
      outb(0x01, wc->ioaddr + WC_OPER);
}

static void wctdm_start_dma(struct wctdm *wc)
{
      /* Reset Master and TDM */
      outb(0x0f, wc->ioaddr + WC_CNTL);
      set_current_state(TASK_INTERRUPTIBLE);
      schedule_timeout(1);
      outb(0x01, wc->ioaddr + WC_CNTL);
      outb(0x01, wc->ioaddr + WC_OPER);
}

static void wctdm_stop_dma(struct wctdm *wc)
{
      outb(0x00, wc->ioaddr + WC_OPER);
}

static void wctdm_reset_tdm(struct wctdm *wc)
{
      /* Reset TDM */
      outb(0x0f, wc->ioaddr + WC_CNTL);
}

static void wctdm_disable_interrupts(struct wctdm *wc)      
{
      outb(0x00, wc->ioaddr + WC_MASK0);
      outb(0x00, wc->ioaddr + WC_MASK1);
}

static int __devinit wctdm_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
      int res;
      struct wctdm *wc;
      struct wctdm_desc *d = (struct wctdm_desc *)ent->driver_data;
      int x;
      int y;
      
      for (x=0;x<WC_MAX_IFACES;x++)
            if (!ifaces[x]) break;
      if (x >= WC_MAX_IFACES) {
            printk(KERN_NOTICE "Too many interfaces\n");
            return -EIO;
      }
      
      if (pci_enable_device(pdev)) {
            res = -EIO;
      } else {
            wc = kmalloc(sizeof(struct wctdm), GFP_KERNEL);
            if (wc) {
                  int cardcount = 0;

                  ifaces[x] = wc;
                  memset(wc, 0, sizeof(struct wctdm));
                  for (x=0; x < sizeof(wc->chans)/sizeof(wc->chans[0]); ++x) {
                        wc->chans[x] = &wc->_chans[x];
                  }
                  spin_lock_init(&wc->lock);
                  wc->curcard = -1;
                  wc->ioaddr = pci_resource_start(pdev, 0);
                  wc->dev = pdev;
                  wc->pos = x;
                  wc->variety = d->name;
                  for (y=0;y<NUM_CARDS;y++)
                        wc->flags[y] = d->flags;
                  /* Keep track of whether we need to free the region */
                  if (request_region(wc->ioaddr, 0xff, "wctdm")) 
                        wc->freeregion = 1;

                  /* Allocate enough memory for two zt chunks, receive and transmit.  Each sample uses
                     32 bits.  Allocate an extra set just for control too */
                  wc->writechunk = pci_alloc_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, &wc->writedma);
                  if (!wc->writechunk) {
                        printk(KERN_NOTICE "wctdm: Unable to allocate DMA-able memory\n");
                        if (wc->freeregion)
                              release_region(wc->ioaddr, 0xff);
                        return -ENOMEM;
                  }

                  wc->readchunk = wc->writechunk + DAHDI_MAX_CHUNKSIZE * 2;   /* in doublewords */
                  wc->readdma = wc->writedma + DAHDI_MAX_CHUNKSIZE * 8;       /* in bytes */

                  if (wctdm_initialize(wc)) {
                        printk(KERN_NOTICE "wctdm: Unable to intialize FXS\n");
                        /* Set Reset Low */
                        x=inb(wc->ioaddr + WC_CNTL);
                        outb((~0x1)&x, wc->ioaddr + WC_CNTL);
                        /* Free Resources */
                        free_irq(pdev->irq, wc);
                        if (wc->freeregion)
                              release_region(wc->ioaddr, 0xff);
                        pci_free_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)wc->writechunk, wc->writedma);
                        kfree(wc);
                        return -EIO;
                  }

                  /* Enable bus mastering */
                  pci_set_master(pdev);

                  /* Keep track of which device we are */
                  pci_set_drvdata(pdev, wc);

                  if (request_irq(pdev->irq, wctdm_interrupt, DAHDI_IRQ_SHARED, "wctdm", wc)) {
                        printk(KERN_NOTICE "wctdm: Unable to request IRQ %d\n", pdev->irq);
                        if (wc->freeregion)
                              release_region(wc->ioaddr, 0xff);
                        pci_free_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)wc->writechunk, wc->writedma);
                        pci_set_drvdata(pdev, NULL);
                        kfree(wc);
                        return -EIO;
                  }


                  if (wctdm_hardware_init(wc)) {
                        /* Set Reset Low */
                        x=inb(wc->ioaddr + WC_CNTL);
                        outb((~0x1)&x, wc->ioaddr + WC_CNTL);
                        /* Free Resources */
                        free_irq(pdev->irq, wc);
                        if (wc->freeregion)
                              release_region(wc->ioaddr, 0xff);
                        pci_free_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)wc->writechunk, wc->writedma);
                        pci_set_drvdata(pdev, NULL);
                        dahdi_unregister(&wc->span);
                        kfree(wc);
                        return -EIO;

                  }

                  wctdm_post_initialize(wc);

                  /* Enable interrupts */
                  wctdm_enable_interrupts(wc);
                  /* Initialize Write/Buffers to all blank data */
                  memset((void *)wc->writechunk,0,DAHDI_MAX_CHUNKSIZE * 2 * 2 * 4);

                  /* Start DMA */
                  wctdm_start_dma(wc);

                  for (x = 0; x < NUM_CARDS; x++) {
                        if (wc->cardflag & (1 << x))
                              cardcount++;
                  }

                  printk(KERN_INFO "Found a Wildcard TDM: %s (%d modules)\n", wc->variety, cardcount);
                  res = 0;
            } else
                  res = -ENOMEM;
      }
      return res;
}

static void wctdm_release(struct wctdm *wc)
{
      dahdi_unregister(&wc->span);
      if (wc->freeregion)
            release_region(wc->ioaddr, 0xff);
      kfree(wc);
      printk(KERN_INFO "Freed a Wildcard\n");
}

static void __devexit wctdm_remove_one(struct pci_dev *pdev)
{
      struct wctdm *wc = pci_get_drvdata(pdev);
      if (wc) {

            /* Stop any DMA */
            wctdm_stop_dma(wc);
            wctdm_reset_tdm(wc);

            /* In case hardware is still there */
            wctdm_disable_interrupts(wc);
            
            /* Immediately free resources */
            pci_free_consistent(pdev, DAHDI_MAX_CHUNKSIZE * 2 * 2 * 2 * 4, (void *)wc->writechunk, wc->writedma);
            free_irq(pdev->irq, wc);

            /* Reset PCI chip and registers */
            outb(0x0e, wc->ioaddr + WC_CNTL);

            /* Release span, possibly delayed */
            if (!wc->usecount)
                  wctdm_release(wc);
            else
                  wc->dead = 1;
      }
}

static struct pci_device_id wctdm_pci_tbl[] = {
      { 0xe159, 0x0001, 0xa159, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm },
      { 0xe159, 0x0001, 0xe159, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm },
      { 0xe159, 0x0001, 0xb100, PCI_ANY_ID, 0, 0, (unsigned long) &wctdme },
      { 0xe159, 0x0001, 0xb1d9, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmi },
      { 0xe159, 0x0001, 0xb118, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmi },
      { 0xe159, 0x0001, 0xb119, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmi },
      { 0xe159, 0x0001, 0xa9fd, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh },
      { 0xe159, 0x0001, 0xa8fd, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh },
      { 0xe159, 0x0001, 0xa800, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh },
      { 0xe159, 0x0001, 0xa801, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh },
      { 0xe159, 0x0001, 0xa908, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh },
      { 0xe159, 0x0001, 0xa901, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh },
#ifdef TDM_REVH_MATCHALL
      { 0xe159, 0x0001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wctdmh },
#endif
      { 0 }
};

MODULE_DEVICE_TABLE(pci, wctdm_pci_tbl);

static struct pci_driver wctdm_driver = {
      .name = "wctdm",
      .probe = wctdm_init_one,
      .remove =__devexit_p(wctdm_remove_one),
      .suspend = NULL,
      .resume = NULL,
      .id_table = wctdm_pci_tbl,
};

static int __init wctdm_init(void)
{
      int res;
      int x;

      for (x = 0; x < (sizeof(fxo_modes) / sizeof(fxo_modes[0])); x++) {
            if (!strcmp(fxo_modes[x].name, opermode))
                  break;
      }
      if (x < sizeof(fxo_modes) / sizeof(fxo_modes[0])) {
            _opermode = x;
      } else {
            printk(KERN_NOTICE "Invalid/unknown operating mode '%s' specified.  Please choose one of:\n", opermode);
            for (x = 0; x < sizeof(fxo_modes) / sizeof(fxo_modes[0]); x++)
                  printk(KERN_INFO "  %s\n", fxo_modes[x].name);
            printk(KERN_INFO "Note this option is CASE SENSITIVE!\n");
            return -ENODEV;
      }

      if (!strcmp(opermode, "AUSTRALIA")) {
            boostringer = 1;
            fxshonormode = 1;
      }

      /* for the voicedaa_check_hook defaults, if the user has not overridden
         them by specifying them as module parameters, then get the values
         from the selected operating mode
      */
      if (battdebounce == 0) {
            battdebounce = fxo_modes[_opermode].battdebounce;
      }
      if (battalarm == 0) {
            battalarm = fxo_modes[_opermode].battalarm;
      }
      if (battthresh == 0) {
            battthresh = fxo_modes[_opermode].battthresh;
      }

      res = dahdi_pci_module(&wctdm_driver);
      if (res)
            return -ENODEV;
      return 0;
}

static void __exit wctdm_cleanup(void)
{
      pci_unregister_driver(&wctdm_driver);
}

module_param(debug, int, 0600);
module_param(fxovoltage, int, 0600);
module_param(loopcurrent, int, 0600);
module_param(reversepolarity, int, 0600);
module_param(robust, int, 0600);
module_param(opermode, charp, 0600);
module_param(timingonly, int, 0600);
module_param(lowpower, int, 0600);
module_param(boostringer, int, 0600);
module_param(fastringer, int, 0600);
module_param(fxshonormode, int, 0600);
module_param(battdebounce, uint, 0600);
module_param(battalarm, uint, 0600);
module_param(battthresh, uint, 0600);
module_param(ringdebounce, int, 0600);
module_param(fwringdetect, int, 0600);
module_param(alawoverride, int, 0600);
module_param(fastpickup, int, 0600);
module_param(fxotxgain, int, 0600);
module_param(fxorxgain, int, 0600);
module_param(fxstxgain, int, 0600);
module_param(fxsrxgain, int, 0600);

MODULE_DESCRIPTION("Wildcard TDM400P Driver");
MODULE_AUTHOR("Mark Spencer <markster@digium.com>");
MODULE_ALIAS("wcfxs");
MODULE_LICENSE("GPL v2");

module_init(wctdm_init);
module_exit(wctdm_cleanup);

Generated by  Doxygen 1.6.0   Back to index